Suppr超能文献

胚胎发育和干细胞命运的代谢决定因素。

Metabolic determinants of embryonic development and stem cell fate.

作者信息

Folmes Clifford D L, Terzic Andre

机构信息

Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55905, USA.

出版信息

Reprod Fertil Dev. 2014 Dec;27(1):82-8. doi: 10.1071/RD14383.

Abstract

Decoding stem cell metabolism has implicated a tight linkage between energy metabolism and cell fate regulation, a dynamic interplay vital in the execution of developmental and differentiation programs. The inherent plasticity in energy metabolism enables prioritisation of metabolic pathways in support of stage-specific demands. Beyond traditional support of energetic needs, intermediate metabolism may also dictate cell fate choices through regulation of cellular signalling and epigenetic regulation of gene expression. The notion of a 'metabolism-centric' control of stem cell differentiation has been informed by developmental embryogenesis based upon an on-demand paradigm paramount in defining diverse developmental behaviours, from a post-fertilisation nascent zygote to complex organogenesis leading to adequate tissue formation and maturation. Monitored through natural or bioengineered stem cell surrogates, nutrient-responsive metabolites are identified as mediators of cross-talk between metabolic flux, cell signalling and epigenetic regulation charting, collectively, whether a cell will self-renew to maintain progenitor pools, lineage specify to ensure tissue (re)generation or remain quiescent to curb stress damage. Thus, bioenergetics are increasingly recognised as integral in governing stemness and associated organogenic decisions, paving the way for metabolism-defined targets in control of embryology, stem cell biology and tissue regeneration.

摘要

解析干细胞代谢揭示了能量代谢与细胞命运调控之间的紧密联系,这是一种在发育和分化程序执行过程中至关重要的动态相互作用。能量代谢的内在可塑性使得代谢途径能够根据特定阶段的需求进行优先排序。除了对能量需求的传统支持外,中间代谢还可能通过调节细胞信号传导和基因表达的表观遗传调控来决定细胞命运的选择。基于一种按需模式的发育胚胎学为“以代谢为中心”控制干细胞分化的概念提供了依据,这种模式在定义从受精后的新生合子到导致适当组织形成和成熟的复杂器官发生等各种发育行为中至关重要。通过天然或生物工程干细胞替代物进行监测,营养反应性代谢物被确定为代谢通量、细胞信号传导和表观遗传调控之间相互作用的介质,共同决定一个细胞是自我更新以维持祖细胞库、进行谱系特化以确保组织(再)生成,还是保持静止以抑制应激损伤。因此,生物能量学越来越被认为是控制干性和相关器官发生决定的不可或缺的因素,为控制胚胎学、干细胞生物学和组织再生中基于代谢定义的靶点铺平了道路。

相似文献

1
Metabolic determinants of embryonic development and stem cell fate.
Reprod Fertil Dev. 2014 Dec;27(1):82-8. doi: 10.1071/RD14383.
2
Energy metabolism in the acquisition and maintenance of stemness.
Semin Cell Dev Biol. 2016 Apr;52:68-75. doi: 10.1016/j.semcdb.2016.02.010. Epub 2016 Feb 8.
3
Metabolic plasticity in stem cell homeostasis and differentiation.
Cell Stem Cell. 2012 Nov 2;11(5):596-606. doi: 10.1016/j.stem.2012.10.002.
4
Energy metabolism and energy-sensing pathways in mammalian embryonic and adult stem cell fate.
J Cell Sci. 2012 Dec 1;125(Pt 23):5597-608. doi: 10.1242/jcs.114827.
6
Dynamic changes in energy metabolism upon embryonic stem cell differentiation support developmental toxicant identification.
Toxicology. 2014 Oct 3;324:76-87. doi: 10.1016/j.tox.2014.07.009. Epub 2014 Jul 30.
7
Stem cell plasticity in development and cancer: epigenetic origin of cancer stem cells.
Subcell Biochem. 2013;61:545-65. doi: 10.1007/978-94-007-4525-4_24.
8
Interplay between Metabolites and the Epigenome in Regulating Embryonic and Adult Stem Cell Potency and Maintenance.
Stem Cell Reports. 2019 Oct 8;13(4):573-589. doi: 10.1016/j.stemcr.2019.09.003.
9
Epigenetic regulatory mechanisms during preimplantation development.
Birth Defects Res C Embryo Today. 2009 Dec;87(4):297-313. doi: 10.1002/bdrc.20165.
10
Mitochondrial plasticity in cell fate regulation.
J Biol Chem. 2019 Sep 20;294(38):13852-13863. doi: 10.1074/jbc.REV118.000828. Epub 2019 Aug 5.

引用本文的文献

1
Glycolytic activity instructs germ layer proportions through regulation of Nodal and Wnt signaling.
Cell Stem Cell. 2025 May 1;32(5):744-758.e7. doi: 10.1016/j.stem.2025.03.011. Epub 2025 Apr 16.
2
The emerging role of protein L-lactylation in metabolic regulation and cell signalling.
Nat Metab. 2025 Apr;7(4):647-664. doi: 10.1038/s42255-025-01259-0. Epub 2025 Apr 2.
5
Enhanced sensitivity and scalability with a Chip-Tip workflow enables deep single-cell proteomics.
Nat Methods. 2025 Mar;22(3):499-509. doi: 10.1038/s41592-024-02558-2. Epub 2025 Jan 16.
9
Crosstalk between Signaling Pathways and Energy Metabolism in Pluripotency.
Int J Stem Cells. 2025 Feb 28;18(1):12-20. doi: 10.15283/ijsc23173. Epub 2024 Mar 18.
10
Redox mechanisms of environmental toxicants on male reproductive function.
Front Cell Dev Biol. 2024 Feb 26;12:1333845. doi: 10.3389/fcell.2024.1333845. eCollection 2024.

本文引用的文献

1
Stem cell lineage specification: you become what you eat.
Cell Metab. 2014 Sep 2;20(3):389-91. doi: 10.1016/j.cmet.2014.08.006.
2
Glucose and glutamine metabolism regulate human hematopoietic stem cell lineage specification.
Cell Stem Cell. 2014 Aug 7;15(2):169-84. doi: 10.1016/j.stem.2014.06.002. Epub 2014 Jun 19.
3
Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells.
Cell Metab. 2014 May 6;19(5):780-94. doi: 10.1016/j.cmet.2014.03.017. Epub 2014 Apr 17.
4
Germline energetics, aging, and female infertility.
Cell Metab. 2013 Jun 4;17(6):838-850. doi: 10.1016/j.cmet.2013.05.007.
5
Lipid metabolism greases the stem cell engine.
Cell Metab. 2013 Feb 5;17(2):153-5. doi: 10.1016/j.cmet.2013.01.010.
6
Regulation of L-threonine dehydrogenase in somatic cell reprogramming.
Stem Cells. 2013 May;31(5):953-65. doi: 10.1002/stem.1335.
7
Highly coordinated proteome dynamics during reprogramming of somatic cells to pluripotency.
Cell Rep. 2012 Dec 27;2(6):1579-92. doi: 10.1016/j.celrep.2012.10.014.
8
Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis.
Nature. 2013 Jan 10;493(7431):226-30. doi: 10.1038/nature11689. Epub 2012 Dec 2.
9
Metabolic plasticity in stem cell homeostasis and differentiation.
Cell Stem Cell. 2012 Nov 2;11(5):596-606. doi: 10.1016/j.stem.2012.10.002.
10
Influence of threonine metabolism on S-adenosylmethionine and histone methylation.
Science. 2013 Jan 11;339(6116):222-6. doi: 10.1126/science.1226603. Epub 2012 Nov 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验