Suppr超能文献

基于局部调整禁忌搜索算法的蛋白质结构预测。

Protein structure prediction with local adjust tabu search algorithm.

出版信息

BMC Bioinformatics. 2014;15 Suppl 15(Suppl 15):S1. doi: 10.1186/1471-2105-15-S15-S1. Epub 2014 Dec 3.

Abstract

BACKGROUND

Protein folding structure prediction is one of the most challenging problems in the bioinformatics domain. Because of the complexity of the realistic protein structure, the simplified structure model and the computational method should be adopted in the research. The AB off-lattice model is one of the simplification models, which only considers two classes of amino acids, hydrophobic (A) residues and hydrophilic (B) residues.

RESULTS

The main work of this paper is to discuss how to optimize the lowest energy configurations in 2D off-lattice model and 3D off-lattice model by using Fibonacci sequences and real protein sequences. In order to avoid falling into local minimum and faster convergence to the global minimum, we introduce a novel method (SATS) to the protein structure problem, which combines simulated annealing algorithm and tabu search algorithm. Various strategies, such as the new encoding strategy, the adaptive neighborhood generation strategy and the local adjustment strategy, are adopted successfully for high-speed searching the optimal conformation corresponds to the lowest energy of the protein sequences. Experimental results show that some of the results obtained by the improved SATS are better than those reported in previous literatures, and we can sure that the lowest energy folding state for short Fibonacci sequences have been found.

CONCLUSIONS

Although the off-lattice models is not very realistic, they can reflect some important characteristics of the realistic protein. It can be found that 3D off-lattice model is more like native folding structure of the realistic protein than 2D off-lattice model. In addition, compared with some previous researches, the proposed hybrid algorithm can more effectively and more quickly search the spatial folding structure of a protein chain.

摘要

背景

蛋白质折叠结构预测是生物信息学领域中最具挑战性的问题之一。由于真实蛋白质结构的复杂性,在研究中应采用简化的结构模型和计算方法。AB 无格模型是简化模型之一,仅考虑两类氨基酸,疏水(A)残基和亲水(B)残基。

结果

本文的主要工作是讨论如何通过使用 Fibonacci 序列和真实蛋白质序列优化 2D 无格模型和 3D 无格模型中的最低能量构象。为了避免陷入局部最小值并更快地收敛到全局最小值,我们将一种新方法(SATS)引入蛋白质结构问题中,该方法结合了模拟退火算法和禁忌搜索算法。采用了各种策略,例如新的编码策略、自适应邻域生成策略和局部调整策略,成功地用于快速搜索与蛋白质序列最低能量相对应的最佳构象。实验结果表明,改进的 SATS 获得的一些结果优于先前文献中的报道,并且我们可以确定已经找到了短 Fibonacci 序列的最低能量折叠状态。

结论

尽管无格模型不是非常真实,但它们可以反映真实蛋白质的一些重要特征。可以发现,3D 无格模型比 2D 无格模型更类似于真实蛋白质的天然折叠结构。此外,与一些先前的研究相比,所提出的混合算法可以更有效地快速搜索蛋白质链的空间折叠结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c059/4271559/7643949e4808/1471-2105-15-S15-S1-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验