Suppr超能文献

研究间异质性的预测分布及其在贝叶斯荟萃分析中的简单应用方法。

Predictive distributions for between-study heterogeneity and simple methods for their application in Bayesian meta-analysis.

作者信息

Turner Rebecca M, Jackson Dan, Wei Yinghui, Thompson Simon G, Higgins Julian P T

机构信息

MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, U.K.

出版信息

Stat Med. 2015 Mar 15;34(6):984-98. doi: 10.1002/sim.6381. Epub 2014 Dec 5.

Abstract

Numerous meta-analyses in healthcare research combine results from only a small number of studies, for which the variance representing between-study heterogeneity is estimated imprecisely. A Bayesian approach to estimation allows external evidence on the expected magnitude of heterogeneity to be incorporated. The aim of this paper is to provide tools that improve the accessibility of Bayesian meta-analysis. We present two methods for implementing Bayesian meta-analysis, using numerical integration and importance sampling techniques. Based on 14,886 binary outcome meta-analyses in the Cochrane Database of Systematic Reviews, we derive a novel set of predictive distributions for the degree of heterogeneity expected in 80 settings depending on the outcomes assessed and comparisons made. These can be used as prior distributions for heterogeneity in future meta-analyses. The two methods are implemented in R, for which code is provided. Both methods produce equivalent results to standard but more complex Markov chain Monte Carlo approaches. The priors are derived as log-normal distributions for the between-study variance, applicable to meta-analyses of binary outcomes on the log odds-ratio scale. The methods are applied to two example meta-analyses, incorporating the relevant predictive distributions as prior distributions for between-study heterogeneity. We have provided resources to facilitate Bayesian meta-analysis, in a form accessible to applied researchers, which allow relevant prior information on the degree of heterogeneity to be incorporated.

摘要

医疗保健研究中的众多荟萃分析仅合并了少数研究的结果,因此对代表研究间异质性的方差估计不准确。贝叶斯估计方法允许纳入关于异质性预期大小的外部证据。本文的目的是提供一些工具,以提高贝叶斯荟萃分析的可及性。我们提出了两种使用数值积分和重要性抽样技术来实施贝叶斯荟萃分析的方法。基于Cochrane系统评价数据库中的14886项二元结局荟萃分析,我们针对80种情况得出了一组新的预测分布,这些情况取决于所评估的结局和所做的比较,用于预测预期的异质性程度。这些可以用作未来荟萃分析中异质性的先验分布。这两种方法都在R语言中实现,并提供了代码。这两种方法产生的结果与标准但更复杂的马尔可夫链蒙特卡罗方法相同。先验分布是根据研究间方差的对数正态分布得出的,适用于对数比值比尺度上二元结局的荟萃分析。这些方法应用于两个示例荟萃分析,将相关的预测分布作为研究间异质性的先验分布。我们以应用研究人员易于获取的形式提供了资源,以促进贝叶斯荟萃分析,从而能够纳入有关异质性程度的相关先验信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62a0/4383649/f4dfc6315c39/sim0034-0984-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验