Suppr超能文献

由自由基S-腺苷甲硫氨酸酶催化的含硫醇和硫醚辅因子及次生代谢产物的生物合成。

The biosynthesis of thiol- and thioether-containing cofactors and secondary metabolites catalyzed by radical S-adenosylmethionine enzymes.

作者信息

Jarrett Joseph T

机构信息

From the Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822

出版信息

J Biol Chem. 2015 Feb 13;290(7):3972-9. doi: 10.1074/jbc.R114.599308. Epub 2014 Dec 4.

Abstract

Sulfur atoms are present as thiol and thioether functional groups in amino acids, coenzymes, cofactors, and various products of secondary metabolic pathways. The biosynthetic pathways for several sulfur-containing biomolecules require the substitution of sulfur for hydrogen at unreactive aliphatic or electron-rich aromatic carbon atoms. Examples discussed in this review include biotin, lipoic acid, methylthioether modifications found in some nucleic acids and proteins, and thioether cross-links found in peptide natural products. Radical S-adenosyl-L-methionine (SAM) enzymes use an iron-sulfur cluster to catalyze the reduction of SAM to methionine and a highly reactive 5'-deoxyadenosyl radical; this radical can abstract hydrogen atoms at unreactive positions, facilitating the introduction of a variety of functional groups. Radical SAM enzymes that catalyze sulfur insertion reactions contain a second iron-sulfur cluster that facilitates the chemistry, either by donating the cluster's endogenous sulfide or by binding and activating exogenous sulfide or sulfur-containing substrates. The use of radical chemistry involving iron-sulfur clusters is an efficient anaerobic route to the generation of carbon-sulfur bonds in cofactors, secondary metabolites, and other natural products.

摘要

硫原子以硫醇和硫醚官能团的形式存在于氨基酸、辅酶、辅因子以及次生代谢途径的各种产物中。几种含硫生物分子的生物合成途径需要在惰性脂肪族或富电子芳香族碳原子上用硫取代氢。本综述中讨论的例子包括生物素、硫辛酸、一些核酸和蛋白质中发现的甲硫醚修饰,以及肽类天然产物中发现的硫醚交联。自由基S-腺苷-L-甲硫氨酸(SAM)酶利用铁硫簇催化SAM还原为甲硫氨酸和一个高反应性的5'-脱氧腺苷自由基;该自由基可在惰性位置夺取氢原子,促进各种官能团的引入。催化硫插入反应的自由基SAM酶含有第二个铁硫簇,该铁硫簇通过提供簇内的内源性硫化物或通过结合并激活外源性硫化物或含硫底物来促进化学反应。涉及铁硫簇的自由基化学的应用是在辅因子、次生代谢产物和其他天然产物中生成碳硫键的一种有效厌氧途径。

相似文献

2
Auxiliary iron-sulfur cofactors in radical SAM enzymes.
Biochim Biophys Acta. 2015 Jun;1853(6):1316-34. doi: 10.1016/j.bbamcr.2015.01.002. Epub 2015 Jan 15.
3
SPASM and twitch domains in S-adenosylmethionine (SAM) radical enzymes.
J Biol Chem. 2015 Feb 13;290(7):3964-71. doi: 10.1074/jbc.R114.581249. Epub 2014 Dec 4.
4
Identification and function of auxiliary iron-sulfur clusters in radical SAM enzymes.
Biochim Biophys Acta. 2012 Nov;1824(11):1196-212. doi: 10.1016/j.bbapap.2012.07.009. Epub 2012 Jul 28.
5
Radical S-adenosyl-L-methionine chemistry in the synthesis of hydrogenase and nitrogenase metal cofactors.
J Biol Chem. 2015 Feb 13;290(7):3987-94. doi: 10.1074/jbc.R114.578161. Epub 2014 Dec 4.
6
Biotin synthase: insights into radical-mediated carbon-sulfur bond formation.
Biochim Biophys Acta. 2012 Nov;1824(11):1213-22. doi: 10.1016/j.bbapap.2012.01.010. Epub 2012 Jan 28.
7
Mechanism of Radical Initiation in the Radical S-Adenosyl-l-methionine Superfamily.
Acc Chem Res. 2018 Nov 20;51(11):2611-2619. doi: 10.1021/acs.accounts.8b00356. Epub 2018 Oct 15.
8
Radical SAM enzymes involved in the biosynthesis of purine-based natural products.
Biochim Biophys Acta. 2012 Nov;1824(11):1245-53. doi: 10.1016/j.bbapap.2012.07.014. Epub 2012 Aug 3.
9
Paramagnetic intermediates generated by radical S-adenosylmethionine (SAM) enzymes.
Acc Chem Res. 2014 Aug 19;47(8):2235-43. doi: 10.1021/ar400235n. Epub 2014 Jul 3.

引用本文的文献

1
A general copper-catalysed enantioconvergent C(sp)-S cross-coupling via biomimetic radical homolytic substitution.
Nat Chem. 2024 Mar;16(3):466-475. doi: 10.1038/s41557-023-01385-w. Epub 2023 Dec 6.
2
Sulfur incorporation into biomolecules: recent advances.
Crit Rev Biochem Mol Biol. 2022 Oct-Dec;57(5-6):461-476. doi: 10.1080/10409238.2022.2141678. Epub 2022 Nov 20.
3
Two Radical SAM Enzymes Are Necessary and Sufficient for the In Vitro Production of the Oxetane Nucleoside Antiviral Agent Albucidin.
Angew Chem Int Ed Engl. 2022 Oct 17;61(42):e202210362. doi: 10.1002/anie.202210362. Epub 2022 Sep 20.
4
ThnL, a B12-dependent radical -adenosylmethionine enzyme, catalyzes thioether bond formation in carbapenem biosynthesis.
Proc Natl Acad Sci U S A. 2022 Aug 23;119(34):e2206494119. doi: 10.1073/pnas.2206494119. Epub 2022 Aug 15.
5
Highlighting the Unique Roles of Radical -Adenosylmethionine Enzymes in Methanogenic Archaea.
J Bacteriol. 2022 Aug 16;204(8):e0019722. doi: 10.1128/jb.00197-22. Epub 2022 Jul 26.
7
Identification of the key functional genes in salt-stress tolerance of Cyanobacterium using in silico analysis.
3 Biotech. 2021 Dec;11(12):503. doi: 10.1007/s13205-021-03050-w. Epub 2021 Nov 18.
8
Rapid SERS Detection of Thiol-Containing Natural Products in Culturing Complex.
Int J Anal Chem. 2020 Aug 1;2020:9271236. doi: 10.1155/2020/9271236. eCollection 2020.

本文引用的文献

2
Radical S-adenosylmethionine enzymes.
Chem Rev. 2014 Apr 23;114(8):4229-317. doi: 10.1021/cr4004709. Epub 2014 Jan 29.
3
Identification of an intermediate methyl carrier in the radical S-adenosylmethionine methylthiotransferases RimO and MiaB.
J Am Chem Soc. 2013 Oct 16;135(41):15404-15416. doi: 10.1021/ja4048448. Epub 2013 Oct 3.
4
Radical S-adenosylmethionine enzyme catalyzed thioether bond formation in sactipeptide biosynthesis.
Curr Opin Chem Biol. 2013 Aug;17(4):605-12. doi: 10.1016/j.cbpa.2013.06.031. Epub 2013 Jul 24.
5
Two Fe-S clusters catalyze sulfur insertion by radical-SAM methylthiotransferases.
Nat Chem Biol. 2013 May;9(5):333-8. doi: 10.1038/nchembio.1229. Epub 2013 Mar 31.
8
The radical SAM enzyme AlbA catalyzes thioether bond formation in subtilosin A.
Nat Chem Biol. 2012 Feb 26;8(4):350-7. doi: 10.1038/nchembio.798.
9
Biotin synthase: insights into radical-mediated carbon-sulfur bond formation.
Biochim Biophys Acta. 2012 Nov;1824(11):1213-22. doi: 10.1016/j.bbapap.2012.01.010. Epub 2012 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验