Suppr超能文献

一种用于评估鞍区肿块患者血清催乳素升高的预测算法。

A predictive algorithm for evaluating elevated serum prolactin in patients with a sellar mass.

作者信息

Cheng Jason S, Salinas Ryan, Molinaro Annette, Chang Edward F, Kunwar Sandeep, Blevins Lewis, Aghi Manish K

机构信息

Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue, M779 Moffitt/Long Hospital, San Francisco, CA 94143-0112, USA.

Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue, M779 Moffitt/Long Hospital, San Francisco, CA 94143-0112, USA.

出版信息

J Clin Neurosci. 2015 Jan;22(1):155-60. doi: 10.1016/j.jocn.2014.07.020. Epub 2014 Dec 4.

Abstract

Hyperprolactinemia occurs in patients with a prolactinoma and in those with a sellar mass compressing the pituitary stalk. Distinguishing these two diagnostic possibilities guides treatment with dopamine agonist therapy or surgical resection. We aimed to identify a simple, predictive algorithm to aid in the diagnosis of prolactinoma in patients with an elevated serum prolactin and a sellar mass. A case-control analysis of pathologically confirmed prolactinomas and non-endocrine secreting controls from the University of California, San Francisco was performed. From 2001 to 2011, this resulted in 177 patients with prolactinomas and 87 controls. Univariate and classification and regression tree (CART) analysis determined the significance of demographic variables, patient symptoms, laboratory values, and radiographic findings in distinguishing pathology. Additionally, a subset of patients with mildly elevated serum prolactin (25-125 ng/ml) was independently analyzed. Prolactinomas had a mean pre-operative prolactin of 858 ng/ml versus 17.57 ng/ml in controls (p<0.01). One hundred and two (62.6%) of the prolactinomas were macroadenomas (size >10mm) compared to 74 (92.5%) of the controls (p<0.01). CART analysis identified preoperative prolactin (>41.5 ng/ml), age (<40.5 years), and size (<17 mm) as being predictive of prolactinoma with a misclassification rate of 7.9% (21/264). Similar analysis on the subset of patients with mildly elevated serum prolactin (<125 ng/ml) identified size (<2.5 cm) and pre-operative prolactin (>40 ng/ml) as key variables. These two factors correctly predicted 98.6% (69/70) of cases. Our model correctly classifies most patients with elevated serum prolactin and identifies those patients most amenable to surgical treatment.

摘要

高催乳素血症见于催乳素瘤患者以及鞍区肿物压迫垂体柄的患者。区分这两种诊断可能性可为多巴胺激动剂治疗或手术切除的治疗提供指导。我们旨在确定一种简单的预测算法,以协助诊断血清催乳素升高且有鞍区肿物的患者是否患有催乳素瘤。我们对加利福尼亚大学旧金山分校经病理证实的催乳素瘤患者和非内分泌分泌性对照进行了病例对照分析。2001年至2011年,共纳入177例催乳素瘤患者和87例对照。单因素分析以及分类与回归树(CART)分析确定了人口统计学变量、患者症状、实验室检查值和影像学检查结果在区分病理类型方面的意义。此外,还对血清催乳素轻度升高(25 - 125 ng/ml)的患者亚组进行了独立分析。催乳素瘤患者术前催乳素平均水平为858 ng/ml,而对照组为17.57 ng/ml(p<0.01)。催乳素瘤患者中有102例(62.6%)为大腺瘤(直径>10mm),而对照组为74例(92.5%)(p<0.01)。CART分析确定术前催乳素(>41.5 ng/ml)、年龄(<40.5岁)和大小(<17 mm)可预测催乳素瘤,错误分类率为7.9%(21/264)。对血清催乳素轻度升高(<125 ng/ml)的患者亚组进行的类似分析确定大小(<2.5 cm)和术前催乳素(>40 ng/ml)为关键变量。这两个因素正确预测了98.6%(69/70)的病例。我们的模型能正确分类大多数血清催乳素升高的患者,并识别出最适合手术治疗的患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验