Suppr超能文献

用于背根神经节刺激的聚(3,4-乙撑二氧噻吩)/碳纳米管神经电极涂层的评估

Evaluation of poly(3,4-ethylenedioxythiophene)/carbon nanotube neural electrode coatings for stimulation in the dorsal root ganglion.

作者信息

Kolarcik Christi L, Catt Kasey, Rost Erika, Albrecht Ingrid N, Bourbeau Dennis, Du Zhanhong, Kozai Takashi D Y, Luo Xiliang, Weber Douglas J, Cui X Tracy

机构信息

Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA. Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA. McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

J Neural Eng. 2015 Feb;12(1):016008. doi: 10.1088/1741-2560/12/1/016008. Epub 2014 Dec 8.

Abstract

OBJECTIVE

The dorsal root ganglion is an attractive target for implanting neural electrode arrays that restore sensory function or provide therapy via stimulation. However, penetrating microelectrodes designed for these applications are small and deliver low currents. For long-term performance of microstimulation devices, novel coating materials are needed in part to decrease impedance values at the electrode-tissue interface and to increase charge storage capacity.

APPROACH

Conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and multi-wall carbon nanotubes (CNTs) were coated on the electrode surface and doped with the anti-inflammatory drug, dexamethasone. Electrode characteristics and the tissue reaction around neural electrodes as a result of stimulation, coating and drug release were characterized. Hematoxylin and eosin staining along with antibodies recognizing Iba1 (microglia/macrophages), NF200 (neuronal axons), NeuN (neurons), vimentin (fibroblasts), caspase-3 (cell death) and L1 (neural cell adhesion molecule) were used. Quantitative image analyses were performed using MATLAB.

MAIN RESULTS

Our results indicate that coated microelectrodes have lower in vitro and in vivo impedance values. Significantly less neuronal death/damage was observed with coated electrodes as compared to non-coated controls. The inflammatory response with the PEDOT/CNT-coated electrodes was also reduced.

SIGNIFICANCE

This study is the first to report on the utility of these coatings in stimulation applications. Our results indicate PEDOT/CNT coatings may be valuable additions to implantable electrodes used as therapeutic modalities.

摘要

目的

背根神经节是植入神经电极阵列以恢复感觉功能或通过刺激进行治疗的一个有吸引力的靶点。然而,为这些应用设计的穿透性微电极尺寸小且电流输出低。对于微刺激装置的长期性能而言,需要新型涂层材料来部分降低电极 - 组织界面处的阻抗值并提高电荷存储容量。

方法

将导电聚合物聚(3,4 - 乙撑二氧噻吩)(PEDOT)和多壁碳纳米管(CNT)涂覆在电极表面,并掺杂抗炎药物地塞米松。对电极特性以及刺激、涂层和药物释放导致的神经电极周围的组织反应进行了表征。使用苏木精和伊红染色以及识别Iba1(小胶质细胞/巨噬细胞)、NF200(神经元轴突)、NeuN(神经元)、波形蛋白(成纤维细胞)、半胱天冬酶 - 3(细胞死亡)和L1(神经细胞粘附分子)的抗体。使用MATLAB进行定量图像分析。

主要结果

我们的结果表明,涂覆的微电极在体外和体内具有较低的阻抗值。与未涂覆的对照相比,涂覆电极观察到的神经元死亡/损伤明显更少。PEDOT/CNT涂覆电极的炎症反应也有所降低。

意义

本研究首次报道了这些涂层在刺激应用中的效用。我们的结果表明,PEDOT/CNT涂层可能是用作治疗方式的可植入电极的有价值的补充。

相似文献

1
Evaluation of poly(3,4-ethylenedioxythiophene)/carbon nanotube neural electrode coatings for stimulation in the dorsal root ganglion.
J Neural Eng. 2015 Feb;12(1):016008. doi: 10.1088/1741-2560/12/1/016008. Epub 2014 Dec 8.
2
PEDOT-CNT coated electrodes stimulate retinal neurons at low voltage amplitudes and low charge densities.
J Neural Eng. 2015 Feb;12(1):016014. doi: 10.1088/1741-2560/12/1/016014. Epub 2015 Jan 14.
3
In Vivo Electrochemical Analysis of a PEDOT/MWCNT Neural Electrode Coating.
Biosensors (Basel). 2015 Oct 13;5(4):618-46. doi: 10.3390/bios5040618.
4
Highly stable carbon nanotube doped poly(3,4-ethylenedioxythiophene) for chronic neural stimulation.
Biomaterials. 2011 Aug;32(24):5551-7. doi: 10.1016/j.biomaterials.2011.04.051. Epub 2011 May 20.
7
Chronic intracortical neural recordings using microelectrode arrays coated with PEDOT-TFB.
Acta Biomater. 2016 Mar 1;32:57-67. doi: 10.1016/j.actbio.2015.12.022. Epub 2015 Dec 12.
9
Bionanotube/Poly(3,4-ethylenedioxythiophene) Nanohybrid as an Electrode for the Neural Interface and Dopamine Sensor.
ACS Appl Mater Interfaces. 2019 May 22;11(20):18254-18267. doi: 10.1021/acsami.9b04862. Epub 2019 May 9.
10
Electropolymerized Poly(3,4-ethylenedioxythiophene) (PEDOT) Coatings for Implantable Deep-Brain-Stimulating Microelectrodes.
ACS Appl Mater Interfaces. 2019 May 15;11(19):17226-17233. doi: 10.1021/acsami.9b03088. Epub 2019 May 6.

引用本文的文献

3
Interfacing with the Brain: How Nanotechnology Can Contribute.
ACS Nano. 2025 Mar 25;19(11):10630-10717. doi: 10.1021/acsnano.4c10525. Epub 2025 Mar 10.
4
Advanced neuroprosthetic electrode design optimized by electromagnetic finite element simulation: innovations and applications.
Front Bioeng Biotechnol. 2024 Nov 6;12:1476447. doi: 10.3389/fbioe.2024.1476447. eCollection 2024.
5
Applications of 2D Nanomaterials in Neural Interface.
Int J Mol Sci. 2024 Aug 7;25(16):8615. doi: 10.3390/ijms25168615.
6
Carbon Nanotube-Based Printed All-Organic Microelectrode Arrays for Neural Stimulation and Recording.
Micromachines (Basel). 2024 May 14;15(5):650. doi: 10.3390/mi15050650.
7
Bioelectronic Neural Interfaces: Improving Neuromodulation Through Organic Conductive Coatings.
Adv Sci (Weinh). 2024 Jul;11(27):e2306275. doi: 10.1002/advs.202306275. Epub 2023 Dec 19.
8
Electrically Controlled Vasodilator Delivery from PEDOT/Silica Nanoparticle Modulates Vessel Diameter in Mouse Brain.
Adv Healthc Mater. 2024 Jan;13(3):e2301221. doi: 10.1002/adhm.202301221. Epub 2023 Nov 15.
9
Evaluation of Polymer-Coated Carbon Nanotube Flexible Microelectrodes for Biomedical Applications.
Bioengineering (Basel). 2023 May 26;10(6):647. doi: 10.3390/bioengineering10060647.
10
Stable in-vivo electrochemical sensing of tonic serotonin levels using PEDOT/CNT-coated glassy carbon flexible microelectrode arrays.
Biosens Bioelectron. 2023 Jun 15;230:115242. doi: 10.1016/j.bios.2023.115242. Epub 2023 Mar 21.

本文引用的文献

1
A carbon-fiber electrode array for long-term neural recording.
J Neural Eng. 2013 Aug;10(4):046016. doi: 10.1088/1741-2560/10/4/046016. Epub 2013 Jul 17.
3
Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces.
Nat Mater. 2012 Dec;11(12):1065-73. doi: 10.1038/nmat3468. Epub 2012 Nov 11.
4
Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants.
J Neural Eng. 2012 Oct;9(5):056015. doi: 10.1088/1741-2560/9/5/056015. Epub 2012 Sep 25.
6
Substrate dependent stability of conducting polymer coatings on medical electrodes.
Biomaterials. 2012 Sep;33(25):5875-86. doi: 10.1016/j.biomaterials.2012.05.017. Epub 2012 May 30.
7
Evolution of brain impedance in dystonic patients treated by GPI electrical stimulation.
Neuromodulation. 2004 Apr;7(2):67-75. doi: 10.1111/j.1094-7159.2004.04009.x.
8
Mechanically adaptive intracortical implants improve the proximity of neuronal cell bodies.
J Neural Eng. 2011 Dec;8(6):066011. doi: 10.1088/1741-2560/8/6/066011. Epub 2011 Nov 2.
9
The injured and regenerating nervous system: immunoglobulin superfamily members as key players.
Neuroscientist. 2012 Oct;18(5):452-66. doi: 10.1177/1073858411419047. Epub 2011 Sep 7.
10
Effect of dexamethasone on gliosis, ischemia, and dopamine extraction during microdialysis sampling in brain tissue.
Anal Chem. 2011 Oct 15;83(20):7662-7. doi: 10.1021/ac200782h. Epub 2011 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验