Heylen Joke, Van Mechelen Iven, Verduyn Philippe, Ceulemans Eva
Research Group of Methodology of Educational Sciences, University of Leuven, Tiensestraat 102, 3000 , Leuven, Belgium.
Research Group of Quantitative Psychology and Individual Differences, University of Leuven, Tiensestraat 102, 3000, Leuven, Belgium.
Psychometrika. 2016 Jun;81(2):411-33. doi: 10.1007/s11336-014-9433-x. Epub 2014 Dec 10.
Quite a few studies in the behavioral sciences result in hierarchical time profile data, with a number of time profiles being measured for each person under study. Associated research questions often focus on individual differences in profile repertoire, that is, differences between persons in the number and the nature of profile shapes that show up for each person. In this paper, we introduce a new method, called KSC-N, that parsimoniously captures such differences while neatly disentangling variability in shape and amplitude. KSC-N induces a few person clusters from the data and derives for each person cluster the types of profile shape that occur most for the persons in that cluster. An algorithm for fitting KSC-N is proposed and evaluated in a simulation study. Finally, the new method is applied to emotional intensity profile data.
行为科学领域的不少研究都产生了分层时间剖面数据,即针对每个研究对象测量多个时间剖面。相关的研究问题通常聚焦于剖面库中的个体差异,也就是说,不同个体所呈现的剖面形状在数量和性质上的差异。在本文中,我们引入了一种名为KSC-N的新方法,该方法能简洁地捕捉此类差异,同时巧妙地分解形状和幅度的变异性。KSC-N从数据中归纳出一些个体簇,并为每个个体簇推导出该簇中个体出现频率最高的剖面形状类型。本文提出了一种拟合KSC-N的算法,并在模拟研究中进行了评估。最后,将这种新方法应用于情绪强度剖面数据。