Suppr超能文献

基于聚类的半胱氨酸共进化模型改善了二硫键连接性预测并减少了对同源序列的要求。

Clustering-based model of cysteine co-evolution improves disulfide bond connectivity prediction and reduces homologous sequence requirements.

作者信息

Raimondi Daniele, Orlando Gabriele, Vranken Wim F

机构信息

Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, La Plaine Campus, Triomflaan, CP 263, Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2 and Structural Biology Research Center, VIB, 1050 Brussels, Belgium Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, La Plaine Campus, Triomflaan, CP 263, Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2 and Structural Biology Research Center, VIB, 1050 Brussels, Belgium Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, La Plaine Campus, Triomflaan, CP 263, Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2 and Structural Biology Research Center, VIB, 1050 Brussels, Belgium.

出版信息

Bioinformatics. 2015 Apr 15;31(8):1219-25. doi: 10.1093/bioinformatics/btu794. Epub 2014 Dec 8.

Abstract

MOTIVATION

Cysteine residues have particular structural and functional relevance in proteins because of their ability to form covalent disulfide bonds. Bioinformatics tools that can accurately predict cysteine bonding states are already available, whereas it remains challenging to infer the disulfide connectivity pattern of unknown protein sequences. Improving accuracy in this area is highly relevant for the structural and functional annotation of proteins.

RESULTS

We predict the intra-chain disulfide bond connectivity patterns starting from known cysteine bonding states with an evolutionary-based unsupervised approach called Sephiroth that relies on high-quality alignments obtained with HHblits and is based on a coarse-grained cluster-based modelization of tandem cysteine mutations within a protein family. We compared our method with state-of-the-art unsupervised predictors and achieve a performance improvement of 25-27% while requiring an order of magnitude less of aligned homologous sequences (∼10(3) instead of ∼10(4)).

AVAILABILITY AND IMPLEMENTATION

The software described in this article and the datasets used are available at http://ibsquare.be/sephiroth.

CONTACT

wvranken@vub.ac.be

SUPPLEMENTARY INFORMATION

Supplementary material is available at Bioinformatics online.

摘要

动机

半胱氨酸残基在蛋白质中具有特殊的结构和功能相关性,因为它们能够形成共价二硫键。能够准确预测半胱氨酸键合状态的生物信息学工具已经存在,然而推断未知蛋白质序列的二硫键连接模式仍然具有挑战性。提高这一领域的准确性对于蛋白质的结构和功能注释非常重要。

结果

我们使用一种名为Sephiroth的基于进化的无监督方法,从已知的半胱氨酸键合状态开始预测链内二硫键连接模式。该方法依赖于通过HHblits获得的高质量比对,并基于蛋白质家族内串联半胱氨酸突变的粗粒度基于聚类的建模。我们将我们的方法与最先进的无监督预测器进行了比较,在需要的比对同源序列数量少一个数量级(约10³而不是约10⁴)的情况下,性能提高了25 - 27%。

可用性和实现

本文所述软件和使用的数据集可在http://ibsquare.be/sephiroth获取。

联系方式

wvranken@vub.ac.be

补充信息

补充材料可在《生物信息学》在线获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验