Suppr超能文献

脊髓损伤后的纤连蛋白基质组装

Fibronectin Matrix Assembly after Spinal Cord Injury.

作者信息

Zhu Yunjiao, Soderblom Cynthia, Trojanowsky Michelle, Lee Do-Hun, Lee Jae K

机构信息

Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami School of Medicine , Miami, Florida.

出版信息

J Neurotrauma. 2015 Aug 1;32(15):1158-67. doi: 10.1089/neu.2014.3703. Epub 2015 Mar 9.

Abstract

After spinal cord injury (SCI), a fibrotic scar forms at the injury site that is best characterized by the accumulation of perivascular fibroblasts and deposition of the extracellular matrix protein fibronectin. While fibronectin is a growth-permissive substrate for axons, the fibrotic scar is inhibitory to axon regeneration. The mechanism behind how fibronectin contributes to the inhibitory environment and how the fibronectin matrix is assembled in the fibrotic scar is unknown. By deleting fibronectin in myeloid cells, we demonstrate that fibroblasts are most likely the major source of fibronectin in the fibrotic scar. In addition, we demonstrate that fibronectin is initially present in a soluble form and is assembled into a matrix at 7 d post-SCI. Assembly of the fibronectin matrix may be mediated by the canonical fibronectin receptor, integrin α5β1, which is primarily expressed by activated macrophages/microglia in the fibrotic scar. Despite the pronounced cavitation after rat SCI, fibrotic scar also is observed in a rat SCI model, which is considered to be more similar to human pathology. Taken together, our study provides insight into the mechanism of fibrotic scar formation after spinal cord injury.

摘要

脊髓损伤(SCI)后,损伤部位会形成纤维化瘢痕,其最显著的特征是血管周围成纤维细胞的积聚和细胞外基质蛋白纤连蛋白的沉积。虽然纤连蛋白是轴突生长的允许性底物,但纤维化瘢痕对轴突再生具有抑制作用。纤连蛋白如何促成抑制性环境以及纤连蛋白基质如何在纤维化瘢痕中组装的机制尚不清楚。通过删除髓样细胞中的纤连蛋白,我们证明成纤维细胞很可能是纤维化瘢痕中纤连蛋白的主要来源。此外,我们证明纤连蛋白最初以可溶形式存在,并在脊髓损伤后7天组装成基质。纤连蛋白基质的组装可能由经典的纤连蛋白受体整合素α5β1介导,该受体主要由纤维化瘢痕中的活化巨噬细胞/小胶质细胞表达。尽管大鼠脊髓损伤后有明显的空洞形成,但在大鼠脊髓损伤模型中也观察到纤维化瘢痕,该模型被认为与人类病理学更相似。综上所述,我们的研究为脊髓损伤后纤维化瘢痕形成的机制提供了见解。

相似文献

1
Fibronectin Matrix Assembly after Spinal Cord Injury.
J Neurotrauma. 2015 Aug 1;32(15):1158-67. doi: 10.1089/neu.2014.3703. Epub 2015 Mar 9.
2
Tumor necrosis factor superfamily member APRIL contributes to fibrotic scar formation after spinal cord injury.
J Neuroinflammation. 2016 Apr 20;13(1):87. doi: 10.1186/s12974-016-0552-4.
3
Fibronectin EDA forms the chronic fibrotic scar after contusive spinal cord injury.
Neurobiol Dis. 2018 Aug;116:60-68. doi: 10.1016/j.nbd.2018.04.014. Epub 2018 Apr 27.
4
Hematogenous macrophage depletion reduces the fibrotic scar and increases axonal growth after spinal cord injury.
Neurobiol Dis. 2015 Feb;74:114-25. doi: 10.1016/j.nbd.2014.10.024. Epub 2014 Nov 4.
9
Mouse mast cell protease 4 suppresses scar formation after traumatic spinal cord injury.
Sci Rep. 2019 Mar 6;9(1):3715. doi: 10.1038/s41598-019-39551-1.
10

引用本文的文献

4
Revisiting the Emerging Role of Light-Based Therapies in the Management of Spinal Cord Injuries.
Mol Neurobiol. 2025 May;62(5):5891-5916. doi: 10.1007/s12035-024-04658-8. Epub 2024 Dec 10.
6
Development of Tissue-Engineered Model of Fibrotic Scarring after Spinal Cord Injury to Study Astrocyte Activation and Neurite Outgrowth In Vitro.
ACS Biomater Sci Eng. 2024 Oct 14;10(10):6545-6557. doi: 10.1021/acsbiomaterials.4c01100. Epub 2024 Sep 11.
9
ScnML models single-cell transcriptome to predict spinal cord neuronal cell status.
Front Genet. 2024 Jun 4;15:1413484. doi: 10.3389/fgene.2024.1413484. eCollection 2024.
10
Interactions between Schwann cell and extracellular matrix in peripheral nerve regeneration.
Front Neurol. 2024 Mar 26;15:1372168. doi: 10.3389/fneur.2024.1372168. eCollection 2024.

本文引用的文献

1
Differential cavitation, angiogenesis and wound-healing responses in injured mouse and rat spinal cords.
Neuroscience. 2014 Sep 5;275:62-80. doi: 10.1016/j.neuroscience.2014.06.003. Epub 2014 Jun 11.
2
Comparative analysis of the efficiency and specificity of myeloid-Cre deleting strains using ROSA-EYFP reporter mice.
J Immunol Methods. 2014 Jun;408:89-100. doi: 10.1016/j.jim.2014.05.009. Epub 2014 May 22.
3
Reactive gliosis and the multicellular response to CNS damage and disease.
Neuron. 2014 Jan 22;81(2):229-48. doi: 10.1016/j.neuron.2013.12.034.
4
Functional regeneration beyond the glial scar.
Exp Neurol. 2014 Mar;253:197-207. doi: 10.1016/j.expneurol.2013.12.024. Epub 2014 Jan 11.
5
A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation.
Nat Neurosci. 2013 Nov;16(11):1618-26. doi: 10.1038/nn.3531. Epub 2013 Sep 29.
6
Perivascular fibroblasts form the fibrotic scar after contusive spinal cord injury.
J Neurosci. 2013 Aug 21;33(34):13882-7. doi: 10.1523/JNEUROSCI.2524-13.2013.
7
Fibronectin aggregation in multiple sclerosis lesions impairs remyelination.
Brain. 2013 Jan;136(Pt 1):116-31. doi: 10.1093/brain/aws313.
8
Activity-induced remodeling of olfactory bulb microcircuits revealed by monosynaptic tracing.
PLoS One. 2011;6(12):e29423. doi: 10.1371/journal.pone.0029423. Epub 2011 Dec 28.
9
Plasma and cellular fibronectin: distinct and independent functions during tissue repair.
Fibrogenesis Tissue Repair. 2011 Sep 16;4:21. doi: 10.1186/1755-1536-4-21.
10
A pericyte origin of spinal cord scar tissue.
Science. 2011 Jul 8;333(6039):238-42. doi: 10.1126/science.1203165.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验