Suppr超能文献

探索水合作用和受限环境在AOT反胶束中淀粉样生成肽Aβ(16 - 22)和Sup35(7 - 13)聚集过程中的作用。

Exploring the role of hydration and confinement in the aggregation of amyloidogenic peptides Aβ(16-22) and Sup35(7-13) in AOT reverse micelles.

作者信息

Martinez Anna Victoria, Małolepsza Edyta, Rivera Eva, Lu Qing, Straub John E

机构信息

Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA.

Department of Chemistry and Biochemistry, Queens College, City University of New York (CUNY), Flushing, New York 11791, USA.

出版信息

J Chem Phys. 2014 Dec 14;141(22):22D530. doi: 10.1063/1.4902550.

Abstract

Knowledge of how intermolecular interactions of amyloid-forming proteins cause protein aggregation and how those interactions are affected by sequence and solution conditions is essential to our understanding of the onset of many degenerative diseases. Of particular interest is the aggregation of the amyloid-β (Aβ) peptide, linked to Alzheimer's disease, and the aggregation of the Sup35 yeast prion peptide, which resembles the mammalian prion protein linked to spongiform encephalopathies. To facilitate the study of these important peptides, experimentalists have identified small peptide congeners of the full-length proteins that exhibit amyloidogenic behavior, including the KLVFFAE sub-sequence, Aβ16-22, and the GNNQQNY subsequence, Sup357-13. In this study, molecular dynamics simulations were used to examine these peptide fragments encapsulated in reverse micelles (RMs) in order to identify the fundamental principles that govern how sequence and solution environment influence peptide aggregation. Aβ16-22 and Sup357-13 are observed to organize into anti-parallel and parallel β-sheet arrangements. Confinement in the sodium bis(2-ethylhexyl) sulfosuccinate (AOT) reverse micelles is shown to stabilize extended peptide conformations and enhance peptide aggregation. Substantial fluctuations in the reverse micelle shape are observed, in agreement with earlier studies. Shape fluctuations are found to facilitate peptide solvation through interactions between the peptide and AOT surfactant, including direct interaction between non-polar peptide residues and the aliphatic surfactant tails. Computed amide I IR spectra are compared with experimental spectra and found to reflect changes in the peptide structures induced by confinement in the RM environment. Furthermore, examination of the rotational anisotropy decay of water in the RM demonstrates that the water dynamics are sensitive to the presence of peptide as well as the peptide sequence. Overall, our results demonstrate that the RM is a complex confining environment where substantial direct interaction between the surfactant and peptides plays an important role in determining the resulting ensemble of peptide conformations. By extension the results suggest that similarly complex sequence-dependent interactions may determine conformational ensembles of amyloid-forming peptides in a cellular environment.

摘要

了解形成淀粉样蛋白的蛋白质的分子间相互作用如何导致蛋白质聚集,以及这些相互作用如何受到序列和溶液条件的影响,对于我们理解许多退行性疾病的发病机制至关重要。特别令人感兴趣的是与阿尔茨海默病相关的淀粉样β(Aβ)肽的聚集,以及与海绵状脑病相关的哺乳动物朊病毒蛋白相似的酵母朊病毒蛋白Sup35肽的聚集。为了便于研究这些重要的肽,实验人员已经鉴定出了全长蛋白的小肽类似物,它们表现出淀粉样生成行为,包括KLVFFAE子序列、Aβ16 - 22和GNNQQNY子序列、Sup357 - 13。在这项研究中,分子动力学模拟被用于研究包裹在反胶束(RM)中的这些肽片段,以便确定控制序列和溶液环境如何影响肽聚集的基本原理。观察到Aβ16 - 22和Sup357 - 13组织成反平行和平行的β - 折叠排列。双(2 - 乙基己基)磺基琥珀酸钠(AOT)反胶束中的限制作用被证明可以稳定延伸的肽构象并增强肽聚集。观察到反胶束形状有显著波动,这与早期研究一致。发现形状波动通过肽与AOT表面活性剂之间的相互作用促进肽的溶剂化,包括非极性肽残基与脂肪族表面活性剂尾部之间的直接相互作用。将计算得到的酰胺I红外光谱与实验光谱进行比较,发现其反映了RM环境中的限制作用所诱导的肽结构变化。此外,对RM中水的旋转各向异性衰减的研究表明,水动力学对肽的存在以及肽序列敏感。总体而言,我们的结果表明RM是一个复杂的限制环境,其中表面活性剂与肽之间的大量直接相互作用在确定所得肽构象集合中起重要作用。由此推断,结果表明类似的复杂序列依赖性相互作用可能在细胞环境中决定形成淀粉样肽的构象集合。

相似文献

2
Role of Charge and Solvation in the Structure and Dynamics of Alanine-Rich Peptide AKA2 in AOT Reverse Micelles.
J Phys Chem B. 2015 Jul 23;119(29):9084-90. doi: 10.1021/jp508813n. Epub 2014 Nov 6.
3
Amyloid formation characteristics of GNNQQNY from yeast prion protein Sup35 and its seeding with heterogeneous polypeptides.
Colloids Surf B Biointerfaces. 2017 Jan 1;149:72-79. doi: 10.1016/j.colsurfb.2016.10.011. Epub 2016 Oct 7.
4
Mass Exchange and Equilibration Processes in AOT Reverse Micelles.
Langmuir. 2018 Feb 20;34(7):2522-2530. doi: 10.1021/acs.langmuir.7b04192. Epub 2018 Feb 6.
5
Structure, stability, and hydration of a polypeptide in AOT reverse micelles.
J Am Chem Soc. 2006 Jan 18;128(2):382-3. doi: 10.1021/ja053043u.
7
Peptide-surfactant interactions: consequences for the amyloid-beta structure.
Biochem Biophys Res Commun. 2012 Mar 30;420(1):136-40. doi: 10.1016/j.bbrc.2012.02.129. Epub 2012 Mar 3.
8
Oxidative refolding of reduced, denatured lysozyme in AOT reverse micelles.
J Colloid Interface Sci. 2008 Jun 1;322(1):95-103. doi: 10.1016/j.jcis.2008.02.057. Epub 2008 Mar 4.
9
Probing the structure and dynamics of confined water in AOT reverse micelles.
J Phys Chem B. 2013 Jun 20;117(24):7345-51. doi: 10.1021/jp402270e. Epub 2013 Jun 6.
10
Comparison between two anionic reverse micelle interfaces: the role of water-surfactant interactions in interfacial properties.
Chemphyschem. 2012 Jan 16;13(1):115-23. doi: 10.1002/cphc.201100638. Epub 2011 Dec 1.

引用本文的文献

1
Amyloid scaffolds as alternative chlorosomes.
Org Biomol Chem. 2017 Aug 30;15(34):7063-7071. doi: 10.1039/c7ob01170a.
2
The Size of AOT Reverse Micelles.
J Phys Chem B. 2016 Nov 10;120(44):11337-11347. doi: 10.1021/acs.jpcb.6b06420. Epub 2016 Oct 28.
3
Biomolecular Crowding Arising from Small Molecules, Molecular Constraints, Surface Packing, and Nano-Confinement.
J Phys Chem Lett. 2015 Jul 2;6(13):2546-53. doi: 10.1021/acs.jpclett.5b00957. Epub 2015 Jun 18.

本文引用的文献

1
Membrane-Protein Interactions Are Key to Understanding Amyloid Formation.
J Phys Chem Lett. 2014 Feb 6;5(3):633-5. doi: 10.1021/jz500054d.
2
Simulations of Protein Aggregation: Insights from Atomistic and Coarse-Grained Models.
J Phys Chem Lett. 2014 Jun 5;5(11):1899-908. doi: 10.1021/jz5006847. Epub 2014 May 19.
3
Role of Charge and Solvation in the Structure and Dynamics of Alanine-Rich Peptide AKA2 in AOT Reverse Micelles.
J Phys Chem B. 2015 Jul 23;119(29):9084-90. doi: 10.1021/jp508813n. Epub 2014 Nov 6.
4
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
5
Empirical maps for the calculation of amide I vibrational spectra of proteins from classical molecular dynamics simulations.
J Phys Chem B. 2014 Jul 17;118(28):7848-55. doi: 10.1021/jp412827s. Epub 2014 Apr 11.
6
A kinetic approach to the sequence-aggregation relationship in disease-related protein assembly.
J Phys Chem B. 2014 Jan 30;118(4):1003-11. doi: 10.1021/jp412648u. Epub 2014 Jan 17.
7
Probing the structure and dynamics of confined water in AOT reverse micelles.
J Phys Chem B. 2013 Jun 20;117(24):7345-51. doi: 10.1021/jp402270e. Epub 2013 Jun 6.
8
Thermodynamic analysis of structural transitions during GNNQQNY aggregation.
Proteins. 2013 Jul;81(7):1141-55. doi: 10.1002/prot.24263. Epub 2013 Apr 12.
9
Kinetics of amyloid aggregation: a study of the GNNQQNY prion sequence.
PLoS Comput Biol. 2012;8(11):e1002782. doi: 10.1371/journal.pcbi.1002782. Epub 2012 Nov 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验