Mihaljević Bojan, Bielza Concha, Benavides-Piccione Ruth, DeFelipe Javier, Larrañaga Pedro
Computational Intelligence Group, Departamento de Inteligencia Artificial, Escuela Técnica Superior de Ingenieros Informáticos, Universidad Politécnica de Madrid Madrid, Spain.
Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid Madrid, Spain ; Instituto Cajal, Consejo Superior de Investigaciones Científicas Madrid, Spain.
Front Comput Neurosci. 2014 Nov 25;8:150. doi: 10.3389/fncom.2014.00150. eCollection 2014.
Interneuron classification is an important and long-debated topic in neuroscience. A recent study provided a data set of digitally reconstructed interneurons classified by 42 leading neuroscientists according to a pragmatic classification scheme composed of five categorical variables, namely, of the interneuron type and four features of axonal morphology. From this data set we now learned a model which can classify interneurons, on the basis of their axonal morphometric parameters, into these five descriptive variables simultaneously. Because of differences in opinion among the neuroscientists, especially regarding neuronal type, for many interneurons we lacked a unique, agreed-upon classification, which we could use to guide model learning. Instead, we guided model learning with a probability distribution over the neuronal type and the axonal features, obtained, for each interneuron, from the neuroscientists' classification choices. We conveniently encoded such probability distributions with Bayesian networks, calling them label Bayesian networks (LBNs), and developed a method to predict them. This method predicts an LBN by forming a probabilistic consensus among the LBNs of the interneurons most similar to the one being classified. We used 18 axonal morphometric parameters as predictor variables, 13 of which we introduce in this paper as quantitative counterparts to the categorical axonal features. We were able to accurately predict interneuronal LBNs. Furthermore, when extracting crisp (i.e., non-probabilistic) predictions from the predicted LBNs, our method outperformed related work on interneuron classification. Our results indicate that our method is adequate for multi-dimensional classification of interneurons with probabilistic labels. Moreover, the introduced morphometric parameters are good predictors of interneuron type and the four features of axonal morphology and thus may serve as objective counterparts to the subjective, categorical axonal features.
中间神经元分类是神经科学中一个重要且长期存在争议的话题。最近的一项研究提供了一个数据集,其中包含由42位顶尖神经科学家根据一个实用分类方案分类的数字重建中间神经元,该方案由五个分类变量组成,即中间神经元类型以及轴突形态的四个特征。从这个数据集中,我们现在学习到了一个模型,该模型可以根据中间神经元的轴突形态测量参数,同时将它们分类到这五个描述性变量中。由于神经科学家之间存在意见分歧,特别是在神经元类型方面,对于许多中间神经元,我们缺乏一个独特的、大家一致认可的分类,而这个分类本可用于指导模型学习。相反,我们用一个关于神经元类型和轴突特征的概率分布来指导模型学习,这个概率分布是从神经科学家的分类选择中为每个中间神经元获得的。我们用贝叶斯网络方便地编码了这样 的概率分布,称它们为标签贝叶斯网络(LBN),并开发了一种预测它们的方法。该方法通过在与被分类中间神经元最相似的中间神经元的LBN之间形成概率共识来预测一个LBN。我们使用18个轴突形态测量参数作为预测变量,其中13个是我们在本文中作为分类轴突特征的定量对应物引入的。我们能够准确地预测中间神经元的LBN。此外,当从预测的LBN中提取清晰(即非概率性)预测时,我们的方法在中间神经元分类方面优于相关工作。我们的结果表明,我们的方法适用于对具有概率标签的中间神经元进行多维度分类。此外,引入的形态测量参数是中间神经元类型和轴突形态四个特征的良好预测指标,因此可以作为主观分类轴突特征的客观对应物。