Blondeaux P, Foti E, Vittori G
Department of Civil, Chemical and Environmental Engineering, University of Genova, Via Montallegro 1, 16145 Genova, Italy
Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
Philos Trans A Math Phys Eng Sci. 2015 Jan 28;373(2033). doi: 10.1098/rsta.2014.0112.
The time development of ripples under sea waves is investigated by means of the weakly nonlinear stability analysis of a flat sandy bottom subjected to the viscous oscillatory flow that is present in the boundary layer at the bottom of propagating sea waves. Second-order effects in the wave steepness are considered, to take into account the presence of the steady drift generated by the surface waves. Hence, the work of Vittori & Blondeaux (1990 J. Fluid Mech. 218, 19-39 (doi:10.1017/S002211209000091X)) is extended by considering steeper waves and/or less deep waters. As shown by the linear analysis of Blondeaux et al. (2000 Eur. J. Mech. B 19, 285-301 (doi:10.1016/S0997-7546(90)00106-I)), because of the presence of a steady velocity component in the direction of wave propagation, ripples migrate at a constant rate that depends on sediment and wave characteristics. The weakly nonlinear analysis shows that the ripple profile is no longer symmetric with respect to ripple crests and troughs and the symmetry index is computed as a function of the parameters of the problem. In particular, a relationship is determined between the symmetry index and the strength of the steady drift. A fair agreement between model results and laboratory data is obtained, albeit further data and analyses are necessary to determine the behaviour of vortex ripples and to be conclusive.
通过对平坦沙质海底进行弱非线性稳定性分析,研究了海浪作用下波纹随时间的发展情况。该分析针对传播海浪底部边界层中存在的粘性振荡流。考虑了波陡的二阶效应,以考虑表面波产生的稳定漂移的存在。因此,通过考虑更陡的波和/或更浅的水域,扩展了维托里和布隆代洛(1990年,《流体力学杂志》218卷,第19 - 39页,doi:10.1017/S002211209000091X)的工作。正如布隆代洛等人(2000年,《欧洲力学B辑》19卷,第285 - 301页,doi:10.1016/S0997 - 7546(90)00106 - I)的线性分析所示,由于在波传播方向上存在稳定速度分量,波纹以恒定速率迁移,该速率取决于沉积物和波浪特征。弱非线性分析表明,波纹剖面不再关于波纹波峰和波谷对称,并且对称指数作为问题参数的函数进行计算。特别地,确定了对称指数与稳定漂移强度之间的关系。尽管需要进一步的数据和分析来确定涡旋波纹的行为并得出结论,但模型结果与实验室数据之间仍取得了较好的一致性。