Suppr超能文献

相似文献

1
DNA polymerases in biotechnology.
Front Microbiol. 2014 Dec 1;5:659. doi: 10.3389/fmicb.2014.00659. eCollection 2014.
2
DNA polymerases and biotechnological applications.
Curr Opin Biotechnol. 2017 Dec;48:187-195. doi: 10.1016/j.copbio.2017.04.005. Epub 2017 Jun 13.
3
Nonspecific PCR amplification by high-fidelity polymerases: implications for next-generation sequencing of AFLP markers.
Mol Ecol Resour. 2012 Jan;12(1):123-7. doi: 10.1111/j.1755-0998.2011.03063.x. Epub 2011 Sep 2.
4
Archaeal DNA polymerases in biotechnology.
Appl Microbiol Biotechnol. 2015 Aug;99(16):6585-97. doi: 10.1007/s00253-015-6781-0. Epub 2015 Jul 7.
5
A hot start alternative for high-fidelity DNA polymerase amplification mediated by quantum dots.
Acta Biochim Biophys Sin (Shanghai). 2014 Jun;46(6):502-11. doi: 10.1093/abbs/gmu026. Epub 2014 Apr 24.
7
DNA polymerases as engines for biotechnology.
Biotechniques. 2001 Aug;31(2):370-6, 378-80, 382-3. doi: 10.2144/01312rv01.
8
Directed evolution of novel polymerases.
Biomol Eng. 2005 Jun;22(1-3):39-49. doi: 10.1016/j.bioeng.2004.12.001.
9
Variants of sequence family B Thermococcus kodakaraensis DNA polymerase with increased mismatch extension selectivity.
PLoS One. 2017 Aug 23;12(8):e0183623. doi: 10.1371/journal.pone.0183623. eCollection 2017.
10
Structural Insights into the Processing of Nucleobase-Modified Nucleotides by DNA Polymerases.
Acc Chem Res. 2016 Mar 15;49(3):418-27. doi: 10.1021/acs.accounts.5b00544. Epub 2016 Mar 5.

引用本文的文献

2
Codon optimization of a gene encoding DNA polymerase from Pyrococcus furiosus and its expression in Escherichia coli.
J Genet Eng Biotechnol. 2023 Nov 21;21(1):129. doi: 10.1186/s43141-023-00605-7.
3
A simple and general approach to generate photoactivatable DNA processing enzymes.
Nucleic Acids Res. 2022 Apr 8;50(6):e31. doi: 10.1093/nar/gkab1212.
5
PCR inhibition in qPCR, dPCR and MPS-mechanisms and solutions.
Anal Bioanal Chem. 2020 Apr;412(9):2009-2023. doi: 10.1007/s00216-020-02490-2. Epub 2020 Feb 12.
7
Engineering Polymerases for New Functions.
Trends Biotechnol. 2019 Oct;37(10):1091-1103. doi: 10.1016/j.tibtech.2019.03.011. Epub 2019 Apr 16.

本文引用的文献

1
DNA polymerases engineered by directed evolution to incorporate non-standard nucleotides.
Front Microbiol. 2014 Oct 31;5:565. doi: 10.3389/fmicb.2014.00565. eCollection 2014.
2
Mutant Taq DNA polymerases with improved elongation ability as a useful reagent for genetic engineering.
Front Microbiol. 2014 Sep 3;5:461. doi: 10.3389/fmicb.2014.00461. eCollection 2014.
3
DNA polymerases as useful reagents for biotechnology - the history of developmental research in the field.
Front Microbiol. 2014 Aug 29;5:465. doi: 10.3389/fmicb.2014.00465. eCollection 2014.
4
Structural insights into eukaryotic DNA replication.
Front Microbiol. 2014 Aug 25;5:444. doi: 10.3389/fmicb.2014.00444. eCollection 2014.
6
Replication slippage of the thermophilic DNA polymerases B and D from the Euryarchaeota Pyrococcus abyssi.
Front Microbiol. 2014 Aug 7;5:403. doi: 10.3389/fmicb.2014.00403. eCollection 2014.
7
A novel thermostable polymerase for RNA and DNA loop-mediated isothermal amplification (LAMP).
Front Microbiol. 2014 Aug 1;5:395. doi: 10.3389/fmicb.2014.00395. eCollection 2014.
8
Engineering processive DNA polymerases with maximum benefit at minimum cost.
Front Microbiol. 2014 Aug 4;5:380. doi: 10.3389/fmicb.2014.00380. eCollection 2014.
9
Evolution of replicative DNA polymerases in archaea and their contributions to the eukaryotic replication machinery.
Front Microbiol. 2014 Jul 21;5:354. doi: 10.3389/fmicb.2014.00354. eCollection 2014.
10
DNA polymerases drive DNA sequencing-by-synthesis technologies: both past and present.
Front Microbiol. 2014 Jun 24;5:305. doi: 10.3389/fmicb.2014.00305. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验