Suppr超能文献

使用疾病状态指数预测从认知障碍到阿尔茨海默病的进展。

Predicting progression from cognitive impairment to Alzheimer's disease with the Disease State Index.

作者信息

Hall Anette, Mattila Jussi, Koikkalainen Juha, Lötjonen Jyrki, Wolz Robin, Scheltens Philip, Frisoni Giovanni, Tsolaki Magdalini, Nobili Flavio, Freund-Levi Yvonne, Minthon Lennart, Frölich Lutz, Hampel Harald, Visser Pieter Jelle, Soininen Hilkka

机构信息

University of Eastern Finland, Institute of Clinical Medicine/Neurology, P.O.Box 1627, 70211 Kuopio, Finland.

出版信息

Curr Alzheimer Res. 2015;12(1):69-79. doi: 10.2174/1567205012666141218123829.

Abstract

We evaluated the performance of the Disease State Index (DSI) method when predicting progression to Alzheimer's disease (AD) in patients with subjective cognitive impairment (SCI), amnestic or non-amnestic mild cognitive impairment (aMCI, naMCI). The DSI model measures patients' similarity to diagnosed cases based on available data, such as cognitive tests, the APOE genotype, CSF biomarkers and MRI. We applied the DSI model to data from the DESCRIPA cohort, where non-demented patients (N=775) with different subtypes of cognitive impairment were followed for 1 to 5 years. Classification accuracies for the subgroups were calculated with the DSI using leave-one-out crossvalidation. The DSI's classification accuracy in predicting progression to AD was 0.75 (AUC=0.83) in the total population, 0.70 (AUC=0.77) for aMCI and 0.71 (AUC=0.76) for naMCI. For a subset of approximately half of the patients with high or low DSI values, accuracy reached 0.86 (all), 0.78 (aMCI), and 0.85 (naMCI). For patients with MRI or CSF biomarker data available, theywere 0.78 (all), 0.76 (aMCI) and 0.76 (naMCI), while for clear cases the accuracies rose to 0.90 (all), 0.83 (aMCI) and 0.91 (naMCI). The results show that the DSI model can distinguish between clear and ambiguous cases, assess the severity of the disease and also provide information on the effectiveness of different biomarkers. While a specific test or biomarker may confound analysis for an individual patient, combining several different types of tests and biomarkers could be able to reveal the trajectory of the disease and improve the prediction of AD progression.

摘要

我们评估了疾病状态指数(DSI)方法在预测主观认知障碍(SCI)、遗忘型或非遗忘型轻度认知障碍(aMCI、naMCI)患者进展为阿尔茨海默病(AD)时的性能。DSI模型基于认知测试、APOE基因型、脑脊液生物标志物和MRI等现有数据来衡量患者与已确诊病例的相似性。我们将DSI模型应用于DESCRIPA队列的数据,该队列中775名患有不同亚型认知障碍的非痴呆患者被随访了1至5年。使用留一法交叉验证,通过DSI计算各亚组的分类准确率。DSI在预测进展为AD方面的分类准确率在总体人群中为0.75(AUC = 0.83),aMCI为0.70(AUC = 0.77),naMCI为0.71(AUC = 0.76)。对于DSI值高或低的约一半患者子集,准确率分别达到0.86(总体)、0.78(aMCI)和0.85(naMCI)。对于有MRI或脑脊液生物标志物数据的患者,准确率分别为0.78(总体)、0.76(aMCI)和0.76(naMCI),而对于明确病例,准确率分别升至0.90(总体)、0.83(aMCI)和0.91(naMCI)。结果表明,DSI模型可以区分明确和不明确的病例,评估疾病的严重程度,还能提供不同生物标志物有效性的信息。虽然特定的检测或生物标志物可能会混淆个体患者的分析,但结合几种不同类型的检测和生物标志物可能能够揭示疾病轨迹并改善对AD进展的预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验