Suppr超能文献

鸟类性染色体的时间基因组进化。

Temporal genomic evolution of bird sex chromosomes.

机构信息

China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China.

出版信息

BMC Evol Biol. 2014 Dec 12;14:250. doi: 10.1186/s12862-014-0250-8.

Abstract

BACKGROUND

Sex chromosomes exhibit many unusual patterns in sequence and gene expression relative to autosomes. Birds have evolved a female heterogametic sex system (male ZZ, female ZW), through stepwise suppression of recombination between chrZ and chrW. To address the broad patterns and complex driving forces of Z chromosome evolution, we analyze here 45 newly available bird genomes and four species' transcriptomes, over their course of recombination loss between the sex chromosomes.

RESULTS

We show Z chromosomes in general have a significantly higher substitution rate in introns and synonymous protein-coding sites than autosomes, driven by the male-to-female mutation bias ('male-driven evolution' effect). Our genome-wide estimate reveals that the degree of such a bias ranges from 1.6 to 3.8 among different species. G + C content of third codon positions exhibits the same trend of gradual changes with that of introns, between chrZ and autosomes or regions with increasing ages of becoming Z-linked, therefore codon usage bias in birds is probably driven by the mutational bias. On the other hand, Z chromosomes also evolve significantly faster at nonsynonymous sites relative to autosomes ('fast-Z' evolution). And species with a lower level of intronic heterozygosities tend to evolve even faster on the Z chromosome. Further analysis of fast-evolving genes' enriched functional categories and sex-biased expression patterns support that, fast-Z evolution in birds is mainly driven by genetic drift. Finally, we show in species except for chicken, gene expression becomes more male-biased within Z-linked regions that have became hemizygous in females for a longer time, suggesting a lack of global dosage compensation in birds, and the reported regional dosage compensation in chicken has only evolved very recently.

CONCLUSIONS

In conclusion, we uncover that the sequence and expression patterns of Z chromosome genes covary with their ages of becoming Z-linked. In contrast to the mammalian X chromosomes, such patterns are mainly driven by mutational bias and genetic drift in birds, due to the opposite sex-biased inheritance of Z vs. X.

摘要

背景

性染色体在序列和基因表达方面相对于常染色体表现出许多不寻常的模式。鸟类通过逐步抑制 chrZ 和 chrW 之间的重组,进化出了雌性异配子性别系统(雄性 ZZ,雌性 ZW)。为了解决 Z 染色体进化的广泛模式和复杂驱动力,我们在此分析了 45 个新的鸟类基因组和四个物种的转录组,这些基因组和转录组跨越了性染色体之间重组丢失的过程。

结果

我们发现,一般来说,Z 染色体在内含子和同义蛋白质编码位点的替代率显著高于常染色体,这是由雄性到雌性的突变偏向(“雄性驱动进化”效应)驱动的。我们的全基因组估计表明,这种偏向的程度在不同物种之间从 1.6 到 3.8 不等。第三密码子位置的 G+C 含量与 chrZ 和常染色体之间或与成为 Z 连锁的区域的内含子一样,呈逐渐变化的趋势,因此鸟类的密码子使用偏向可能是由突变偏向驱动的。另一方面,Z 染色体相对于常染色体在非同义位点的进化速度也显著加快(“快速-Z 进化”)。并且,内含子杂合度较低的物种在 Z 染色体上的进化速度甚至更快。对快速进化基因的丰富功能类别和性别偏向表达模式的进一步分析支持了这一观点,即鸟类的“快速-Z”进化主要是由遗传漂变驱动的。最后,我们发现,在除了鸡以外的物种中,在雌性中成为半合子的时间更长的 Z 连锁区域内,基因表达变得更加偏向雄性,这表明鸟类中缺乏全局剂量补偿,而在鸡中报道的局部剂量补偿仅在最近才进化而来。

结论

总之,我们发现 Z 染色体基因的序列和表达模式与其成为 Z 连锁的年龄相关。与哺乳动物的 X 染色体不同,这种模式主要是由鸟类中 Z 与 X 相反的性别偏向遗传导致的突变偏向和遗传漂变驱动的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4df1/4272511/d9f322f8a178/12862_2014_250_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验