Ay C, Posch F, Kaider A, Zielinski C, Pabinger I
Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria.
J Thromb Haemost. 2015 Mar;13(3):390-7. doi: 10.1111/jth.12825. Epub 2015 Jan 14.
In studies on cancer-associated venous thromboembolism (VTE), patients not only are at risk for VTE but also may die from their underlying malignancy.
In this competing-risk (CR) scenario, we systematically compared the performance of standard (Kaplan-Meier estimator [1-KM]), log-rank test, and Cox model) and specific CR methods for time-to-VTE analysis.
Cancer patients (1542) were prospectively followed for a median of 24 months. VTE occurred in 112 (7.3%) patients, and 572 (37.1%) patients died.
In comparison with the CR method, 1-KM slightly overestimated the cumulative incidence of VTE (cumulative VTE incidence at 12 and 24 months [1-KM vs. CR]: 7.22% vs. 6.74%, and 8.40% vs. 7.54%, respectively). Greater bias was revealed in tumor entities with high early mortality (e.g., pancreatic cancer, n = 99, 24-month cumulative VTE incidence: 28.37% vs. 19.30%). Comparing the (subdistribution) hazard of VTE between patients with low and high baseline D-dimer, the Cox model yielded a higher estimate than the corresponding CR model (hazard vs. subdistribution hazard ratio [95% CI] 2.85 [1.92-4.21] vs. 2.47 [1.67-3.65]). For this comparison, the log-rank test yielded a higher test statistic and smaller P-value than Gray's test (χ(2) on 1 degree of freedom: 29.88 vs. 21.34).
In patients with cancer who are at risk for VTE and death, standard and CR methods for time-to-VTE analysis can generate differing results. For 1-KM, the magnitude of bias is a direct function of competing mortality. Consequently, bias tends to be negligible in cancer patient populations with low mortality but can be considerable in populations at high risk of death.
在癌症相关静脉血栓栓塞(VTE)的研究中,患者不仅有发生VTE的风险,还可能死于其潜在的恶性肿瘤。
在这种竞争风险(CR)情况下,我们系统地比较了标准方法(Kaplan-Meier估计器[1-KM])、对数秩检验和Cox模型)以及用于VTE发生时间分析的特定CR方法的性能。
对1542例癌症患者进行前瞻性随访,中位随访时间为24个月。112例(7.3%)患者发生VTE,572例(37.1%)患者死亡。
与CR方法相比,1-KM略微高估了VTE的累积发生率(12个月和24个月时的VTE累积发生率[1-KM与CR]:分别为7.22%对6.74%,以及8.40%对7.54%)。在早期死亡率高的肿瘤实体中显示出更大的偏差(例如,胰腺癌,n = 99,24个月累积VTE发生率:28.37%对19.30%)。比较基线D-二聚体水平低和高的患者之间VTE的(亚分布)风险,Cox模型产生的估计值高于相应的CR模型(风险与亚分布风险比[95%CI]:2.85[1.92 - 4.21]对2.47[1.67 - 3.65])。对于此比较,对数秩检验产生的检验统计量高于Gray检验,P值更小(自由度为1时的χ(2):29.88对21.34)。
在有VTE和死亡风险的癌症患者中,用于VTE发生时间分析的标准方法和CR方法可能产生不同的结果。对于1-KM,偏差程度是竞争死亡率的直接函数。因此,在低死亡率的癌症患者群体中偏差往往可以忽略不计,但在高死亡风险群体中可能相当大。