Department of Physics and ‡Department of Electrical and Computer Engineering and Center for Nano and Micro Manufacturing, University of California , Davis, California 95616, United States.
Nano Lett. 2015 Jan 14;15(1):523-9. doi: 10.1021/nl503870u. Epub 2014 Dec 31.
Nanowires have large surface areas that create new challenges for their optoelectronic applications. Lithographic processes involved in device fabrication and substrate interfaces can lead to surface defects and substantially reduce charge carrier lifetimes and diffusion lengths. Here, we show that using a bridging method to suspend pristine nanowires allows for circumventing detrimental fabrication steps and interfacial effects associated with planar device architectures. We report electron diffusion lengths up to 2.7 μm in bridged silicon nanowire devices, much longer than previously reported values for silicon nanowires with a diameter of 100 nm. Strikingly, electron diffusion lengths are reduced to only 45 nm in planar devices incorporating nanowires grown under the same conditions. The highly scalable silicon nanobridge devices with the demonstrated long diffusion lengths may find exciting applications in photovoltaics, sensing, and photodetectors.
纳米线具有较大的表面积,这为它们的光电应用带来了新的挑战。器件制造中涉及的光刻工艺和基底接口可能导致表面缺陷,并大大降低载流子的寿命和扩散长度。在这里,我们展示了使用桥接方法来悬浮原始纳米线,可以避免与平面器件结构相关的有害制造步骤和界面效应。我们报告了在桥接的硅纳米线器件中,电子扩散长度高达 2.7μm,这比以前报道的直径为 100nm 的硅纳米线的数值要长得多。引人注目的是,在包含在相同条件下生长的纳米线的平面器件中,电子扩散长度仅降低到 45nm。具有演示的长扩散长度的高度可扩展的硅纳米桥器件可能在光伏、传感和光电探测器中找到令人兴奋的应用。