Suppr超能文献

微泡与血脑屏障开放:关于声发射和壁面应力预测的数值研究

Microbubbles and blood-brain barrier opening: a numerical study on acoustic emissions and wall stress predictions.

作者信息

Hosseinkhah Nazanin, Goertz David E, Hynynen Kullervo

出版信息

IEEE Trans Biomed Eng. 2015 May;62(5):1293-304. doi: 10.1109/TBME.2014.2385651. Epub 2014 Dec 23.

Abstract

Focused ultrasound with microbubbles is an emerging technique for blood-brain barrier opening. Here, a comprehensive theoretical model of a bubble-fluid-vessel system has been developed which accounts for the bubble's nonspherical oscillations inside a microvessel, and its resulting acoustic emissions. Numerical simulations of unbound and confined encapsulated bubbles were performed to evaluate the effect of the vessel wall on acoustic emissions and vessel wall stresses. Using a Marmottant shell model, the normalized second harmonic to fundamental emissions first decreased as a function of pressure (>50 kPa) until reaching a minima ("transition point") at which point they increased. The transition point of unbound compared to confined bubble populations occurred at different pressures and was associated with an accompanying increase in shear and circumferential wall stresses. As the wall stresses depend on the bubble to vessel wall distance, the stresses were evaluated for bubbles with their wall at a constant distance to a flat wall. As a result, the wall stresses were bubble size and frequency dependent and the peak stress values induced by bubbles larger than resonance remained constant versus frequency at a constant mechanical index.

摘要

聚焦超声联合微泡是一种新兴的血脑屏障开放技术。在此,已建立了一个气泡-流体-血管系统的综合理论模型,该模型考虑了微泡在微血管内的非球形振荡及其产生的声发射。对未束缚和受限包裹气泡进行了数值模拟,以评估血管壁对声发射和血管壁应力的影响。使用Marmottant壳模型,归一化二次谐波与基波发射的比值首先随压力(>50 kPa)降低,直到达到最小值(“转变点”),此时该比值会增加。未束缚气泡群体与受限气泡群体的转变点出现在不同压力下,且与剪切应力和周向壁应力的相应增加有关。由于壁应力取决于气泡与血管壁的距离,因此对气泡壁与平壁距离恒定的气泡进行了应力评估。结果表明,壁应力与气泡大小和频率有关,在恒定机械指数下,大于共振的气泡引起的峰值应力值相对于频率保持恒定。

相似文献

1
Microbubbles and blood-brain barrier opening: a numerical study on acoustic emissions and wall stress predictions.
IEEE Trans Biomed Eng. 2015 May;62(5):1293-304. doi: 10.1109/TBME.2014.2385651. Epub 2014 Dec 23.
2
A three-dimensional model of an ultrasound contrast agent gas bubble and its mechanical effects on microvessels.
Phys Med Biol. 2012 Feb 7;57(3):785-808. doi: 10.1088/0031-9155/57/3/785. Epub 2012 Jan 18.
3
Microbubble oscillating in a microvessel filled with viscous fluid: A finite element modeling study.
Ultrasonics. 2016 Mar;66:54-64. doi: 10.1016/j.ultras.2015.11.010. Epub 2015 Nov 28.
4
Mechanisms of microbubble-vessel interactions and induced stresses: a numerical study.
J Acoust Soc Am. 2013 Sep;134(3):1875-85. doi: 10.1121/1.4817843.
5
Interaction of an ultrasound-activated contrast microbubble with a wall at arbitrary separation distances.
Phys Med Biol. 2015 Oct 21;60(20):7909-25. doi: 10.1088/0031-9155/60/20/7909. Epub 2015 Sep 25.
6
Pulsating Microbubble in a Micro-vessel and Mechanical Effect on Vessel Wall: A Simulation Study.
J Biomed Phys Eng. 2021 Oct 1;11(5):629-640. doi: 10.31661/jbpe.v0i0.1131. eCollection 2021 Oct.
7
Acoustic response of compliable microvessels containing ultrasound contrast agents.
Phys Med Biol. 2006 Oct 21;51(20):5065-88. doi: 10.1088/0031-9155/51/20/001. Epub 2006 Sep 22.
9
Optical observations of acoustical radiation force effects on individual air bubbles.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Jan;52(1):104-10. doi: 10.1109/tuffc.2005.1397354.

引用本文的文献

1
Dissipative Particle Dynamics Models of Encapsulated Microbubbles and Nanoscale Gas Vesicles for Biomedical Ultrasound Simulations.
ACS Appl Nano Mater. 2025 Aug 4;8(32):16053-16070. doi: 10.1021/acsanm.5c02783. eCollection 2025 Aug 15.
2
Microbubble dynamics in brain microvessels.
PLoS One. 2025 Feb 5;20(2):e0310425. doi: 10.1371/journal.pone.0310425. eCollection 2025.
5
Numerical simulation study on opening blood-brain barrier by ultrasonic cavitation.
Ultrason Sonochem. 2024 Oct;109:107005. doi: 10.1016/j.ultsonch.2024.107005. Epub 2024 Jul 30.
6
Characterization of Blood-Brain Barrier Opening Induced by Transcranial Histotripsy in Murine Brains.
Ultrasound Med Biol. 2024 May;50(5):639-646. doi: 10.1016/j.ultrasmedbio.2023.12.014. Epub 2024 Feb 1.
7
Weakly nonlinear focused ultrasound in viscoelastic media containing multiple bubbles.
Ultrason Sonochem. 2023 Jul;97:106455. doi: 10.1016/j.ultsonch.2023.106455. Epub 2023 May 27.

本文引用的文献

1
Analysis of focused ultrasound-induced blood-brain barrier permeability in a mouse model of Alzheimer's disease using two-photon microscopy.
J Control Release. 2014 Oct 28;192:243-8. doi: 10.1016/j.jconrel.2014.07.051. Epub 2014 Aug 6.
2
Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system.
Adv Drug Deliv Rev. 2014 Jun;72:94-109. doi: 10.1016/j.addr.2014.01.008. Epub 2014 Jan 22.
4
Mechanisms of microbubble-vessel interactions and induced stresses: a numerical study.
J Acoust Soc Am. 2013 Sep;134(3):1875-85. doi: 10.1121/1.4817843.
6
Preliminary observations on the spatial correlation between short-burst microbubble oscillations and vascular bioeffects.
Ultrasound Med Biol. 2012 Dec;38(12):2151-62. doi: 10.1016/j.ultrasmedbio.2012.08.014. Epub 2012 Oct 12.
7
Controlled ultrasound-induced blood-brain barrier disruption using passive acoustic emissions monitoring.
PLoS One. 2012;7(9):e45783. doi: 10.1371/journal.pone.0045783. Epub 2012 Sep 24.
8
Ultrasound enhanced drug delivery to the brain and central nervous system.
Int J Hyperthermia. 2012;28(4):386-96. doi: 10.3109/02656736.2012.666709.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验