Suppr超能文献

人类艰难梭菌感染:NHE3的抑制作用与微生物群谱

Human Clostridium difficile infection: inhibition of NHE3 and microbiota profile.

作者信息

Engevik Melinda A, Engevik Kristen A, Yacyshyn Mary Beth, Wang Jiang, Hassett Daniel J, Darien Benjamin, Yacyshyn Bruce R, Worrell Roger T

机构信息

Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio;

Department of Medicine Division of Digestive Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio;

出版信息

Am J Physiol Gastrointest Liver Physiol. 2015 Mar 15;308(6):G497-509. doi: 10.1152/ajpgi.00090.2014. Epub 2014 Dec 31.

Abstract

Clostridium difficile infection (CDI) is principally responsible for hospital acquired, antibiotic-induced diarrhea and colitis and represents a significant financial burden on our healthcare system. Little is known about C. difficile proliferation requirements, and a better understanding of these parameters is critical for development of new therapeutic targets. In cell lines, C. difficile toxin B has been shown to inhibit Na(+)/H(+) exchanger 3 (NHE3) and loss of NHE3 in mice results in an altered intestinal environment coupled with a transformed gut microbiota composition. However, this has yet to be established in vivo in humans. We hypothesize that C. difficile toxin inhibits NHE3, resulting in alteration of the intestinal environment and gut microbiota. Our results demonstrate that CDI patient biopsy specimens have decreased NHE3 expression and CDI stool has elevated Na(+) and is more alkaline compared with stool from healthy individuals. CDI stool microbiota have increased Bacteroidetes and Proteobacteria and decreased Firmicutes phyla compared with healthy subjects. In vitro, C. difficile grows optimally in the presence of elevated Na(+) and alkaline pH, conditions that correlate to changes observed in CDI patients. To confirm that inhibition of NHE3 was specific to C. difficile, human intestinal organoids (HIOs) were injected with C. difficile or healthy and CDI stool supernatant. Injection of C. difficile and CDI stool decreased NHE3 mRNA and protein expression compared with healthy stool and control HIOs. Together these data demonstrate that C. difficile inhibits NHE3 in vivo, which creates an altered environment favored by C. difficile.

摘要

艰难梭菌感染(CDI)是医院获得性、抗生素诱导性腹泻和结肠炎的主要病因,给我们的医疗系统带来了巨大的经济负担。目前对艰难梭菌的增殖需求了解甚少,更好地理解这些参数对于开发新的治疗靶点至关重要。在细胞系中,已证明艰难梭菌毒素B可抑制钠/氢交换体3(NHE3),小鼠体内NHE3的缺失会导致肠道环境改变以及肠道微生物群组成的变化。然而,这一点在人类体内尚未得到证实。我们假设艰难梭菌毒素会抑制NHE3,从而导致肠道环境和肠道微生物群的改变。我们的结果表明,CDI患者的活检标本中NHE3表达降低,与健康个体的粪便相比,CDI患者的粪便钠含量升高且碱性更强。与健康受试者相比,CDI患者的粪便微生物群中拟杆菌门和变形菌门增加,厚壁菌门减少。在体外,艰难梭菌在钠含量升高和碱性pH条件下生长最佳,这些条件与CDI患者中观察到的变化相关。为了证实NHE3的抑制作用是艰难梭菌特有的,将艰难梭菌或健康及CDI患者的粪便上清液注射到人类肠道类器官(HIOs)中。与健康粪便和对照HIOs相比,注射艰难梭菌和CDI患者粪便后,NHE3的mRNA和蛋白质表达降低。这些数据共同表明,艰难梭菌在体内抑制NHE3,从而创造了一个有利于艰难梭菌生长的改变了的环境。

相似文献

1
Human Clostridium difficile infection: inhibition of NHE3 and microbiota profile.
Am J Physiol Gastrointest Liver Physiol. 2015 Mar 15;308(6):G497-509. doi: 10.1152/ajpgi.00090.2014. Epub 2014 Dec 31.
2
Human Clostridium difficile infection: altered mucus production and composition.
Am J Physiol Gastrointest Liver Physiol. 2015 Mar 15;308(6):G510-24. doi: 10.1152/ajpgi.00091.2014. Epub 2014 Dec 31.
3
Clostridium difficile toxins A and B decrease intestinal SLC26A3 protein expression.
Am J Physiol Gastrointest Liver Physiol. 2018 Jul 1;315(1):G43-G52. doi: 10.1152/ajpgi.00307.2017. Epub 2018 Mar 29.
4
Loss of NHE3 alters gut microbiota composition and influences Bacteroides thetaiotaomicron growth.
Am J Physiol Gastrointest Liver Physiol. 2013 Nov 15;305(10):G697-711. doi: 10.1152/ajpgi.00184.2013. Epub 2013 Sep 26.
6
Role of the intestinal microbiota in resistance to colonization by Clostridium difficile.
Gastroenterology. 2014 May;146(6):1547-53. doi: 10.1053/j.gastro.2014.01.059. Epub 2014 Feb 4.
8
The microbial metabolite urolithin A reduces toxin expression and toxin-induced epithelial damage.
mSystems. 2024 Feb 20;9(2):e0125523. doi: 10.1128/msystems.01255-23. Epub 2024 Jan 9.
9
Markers of intestinal inflammation, not bacterial burden, correlate with clinical outcomes in Clostridium difficile infection.
Clin Infect Dis. 2013 Jun;56(12):1713-21. doi: 10.1093/cid/cit147. Epub 2013 Mar 13.

引用本文的文献

1
Applications and research trends in organoid based infectious disease models.
Sci Rep. 2025 Jul 12;15(1):25185. doi: 10.1038/s41598-025-07816-7.
3
The Use of Gut Organoids: To Study the Physiology and Disease of the Gut Microbiota.
J Cell Mol Med. 2025 Feb;29(4):e70330. doi: 10.1111/jcmm.70330.
4
Advances in the Development and Application of Human Organoids: Techniques, Applications, and Future Perspectives.
Cell Transplant. 2025 Jan-Dec;34:9636897241303271. doi: 10.1177/09636897241303271.
5
Modeling cancer-microbiome interactions in vitro: A guide to co-culture platforms.
Int J Cancer. 2025 Jun 1;156(11):2053-2067. doi: 10.1002/ijc.35298. Epub 2024 Dec 23.
6
Both pathogen and host dynamically adapt pH responses along the intestinal tract during enteric bacterial infection.
PLoS Biol. 2024 Aug 15;22(8):e3002761. doi: 10.1371/journal.pbio.3002761. eCollection 2024 Aug.
7
Advancements in understanding bacterial enteritis pathogenesis through organoids.
Mol Biol Rep. 2024 Apr 15;51(1):512. doi: 10.1007/s11033-024-09495-5.
8
New functions and roles of the Na-H-exchanger NHE3.
Pflugers Arch. 2024 Apr;476(4):505-516. doi: 10.1007/s00424-024-02938-9. Epub 2024 Mar 7.
10
Stem cell-derived intestinal organoids: a novel modality for IBD.
Cell Death Discov. 2023 Jul 21;9(1):255. doi: 10.1038/s41420-023-01556-1.

本文引用的文献

1
Building additional complexity to in vitro-derived intestinal tissues.
Stem Cell Res Ther. 2013;4 Suppl 1(Suppl 1):S1. doi: 10.1186/scrt362. Epub 2013 Dec 20.
2
Loss of NHE3 alters gut microbiota composition and influences Bacteroides thetaiotaomicron growth.
Am J Physiol Gastrointest Liver Physiol. 2013 Nov 15;305(10):G697-711. doi: 10.1152/ajpgi.00184.2013. Epub 2013 Sep 26.
3
Clostridium difficile modulates host innate immunity via toxin-independent and dependent mechanism(s).
PLoS One. 2013 Jul 29;8(7):e69846. doi: 10.1371/journal.pone.0069846. Print 2013.
4
Adaptive strategies and pathogenesis of Clostridium difficile from in vivo transcriptomics.
Infect Immun. 2013 Oct;81(10):3757-69. doi: 10.1128/IAI.00515-13. Epub 2013 Jul 29.
6
Lactobacillus acidophilus upregulates intestinal NHE3 expression and function.
Am J Physiol Gastrointest Liver Physiol. 2012 Dec 15;303(12):G1393-401. doi: 10.1152/ajpgi.00345.2012. Epub 2012 Oct 18.
7
Clostridium difficile: epidemiology, pathogenesis, management, and prevention of a recalcitrant healthcare-associated pathogen.
JPEN J Parenter Enteral Nutr. 2012 Nov;36(6):645-62. doi: 10.1177/0148607112446703. Epub 2012 May 10.
9
The ecology and pathobiology of Clostridium difficile infections: an interdisciplinary challenge.
Zoonoses Public Health. 2011 Feb;58(1):4-20. doi: 10.1111/j.1863-2378.2010.01352.x. Epub 2010 Sep 24.
10
The role of toxin A and toxin B in Clostridium difficile infection.
Nature. 2010 Oct 7;467(7316):711-3. doi: 10.1038/nature09397. Epub 2010 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验