Suppr超能文献

缺氧期间及之后宫颈中部神经元的放电模式

Midcervical neuronal discharge patterns during and following hypoxia.

作者信息

Sandhu M S, Baekey D M, Maling N G, Sanchez J C, Reier P J, Fuller D D

机构信息

Department of Physical Therapy, University of Florida, Gainesville, Florida;

Department of Physiological Sciences, University of Florida, Gainesville, Florida; and.

出版信息

J Neurophysiol. 2015 Apr 1;113(7):2091-101. doi: 10.1152/jn.00834.2014. Epub 2014 Dec 31.

Abstract

Anatomical evidence indicates that midcervical interneurons can be synaptically coupled with phrenic motoneurons. Accordingly, we hypothesized that interneurons in the C3-C4 spinal cord can display discharge patterns temporally linked with inspiratory phrenic motor output. Anesthetized adult rats were studied before, during, and after a 4-min bout of moderate hypoxia. Neuronal discharge in C3-C4 lamina I-IX was monitored using a multielectrode array while phrenic nerve activity was extracellularly recorded. For the majority of cells, spike-triggered averaging (STA) of ipsilateral inspiratory phrenic nerve activity based on neuronal discharge provided no evidence of discharge synchrony. However, a distinct STA phrenic peak with a 6.83 ± 1.1 ms lag was present for 5% of neurons, a result that indicates a monosynaptic connection with phrenic motoneurons. The majority (93%) of neurons changed discharge rate during hypoxia, and the diverse responses included both increased and decreased firing. Hypoxia did not change the incidence of STA peaks in the phrenic nerve signal. Following hypoxia, 40% of neurons continued to discharge at rates above prehypoxia values (i.e., short-term potentiation, STP), and cells with initially low discharge rates were more likely to show STP (P < 0.001). We conclude that a population of nonphrenic C3-C4 neurons in the rat spinal cord is synaptically coupled to the phrenic motoneuron pool, and these cells can modulate inspiratory phrenic output. In addition, the C3-C4 propriospinal network shows a robust and complex pattern of activation both during and following an acute bout of hypoxia.

摘要

解剖学证据表明,颈髓中部的中间神经元可与膈运动神经元形成突触连接。因此,我们推测C3 - C4脊髓中的中间神经元能够呈现出与吸气性膈运动输出在时间上相关的放电模式。对成年麻醉大鼠在中度缺氧4分钟的过程之前、期间和之后进行了研究。使用多电极阵列监测C3 - C4脊髓板层I - IX中的神经元放电,同时细胞外记录膈神经活动。对于大多数细胞,基于神经元放电对同侧吸气性膈神经活动进行的脉冲触发平均(STA)未发现放电同步的证据。然而,5%的神经元出现了一个明显的STA膈峰,延迟为6.83±1.1毫秒,这一结果表明与膈运动神经元存在单突触连接。大多数(93%)神经元在缺氧期间改变了放电率,其多样的反应包括放电增加和减少。缺氧并未改变膈神经信号中STA峰的发生率。缺氧后,40%的神经元继续以高于缺氧前的值放电(即短期增强,STP),且初始放电率较低的细胞更有可能表现出STP(P < 0.001)。我们得出结论,大鼠脊髓中一群非膈C3 - C4神经元与膈运动神经元池形成突触连接,并且这些细胞能够调节吸气性膈输出。此外,C3 - C4脊髓固有网络在急性缺氧期间及之后均表现出强烈且复杂的激活模式。

相似文献

1
Midcervical neuronal discharge patterns during and following hypoxia.
J Neurophysiol. 2015 Apr 1;113(7):2091-101. doi: 10.1152/jn.00834.2014. Epub 2014 Dec 31.
2
Intermittent Hypoxia Enhances Functional Connectivity of Midcervical Spinal Interneurons.
J Neurosci. 2017 Aug 30;37(35):8349-8362. doi: 10.1523/JNEUROSCI.0992-17.2017. Epub 2017 Jul 27.
3
Hypoxia triggers short term potentiation of phrenic motoneuron discharge after chronic cervical spinal cord injury.
Exp Neurol. 2015 Jan;263:314-24. doi: 10.1016/j.expneurol.2014.10.002. Epub 2014 Oct 16.
4
Coupling multielectrode array recordings with silver labeling of recording sites to study cervical spinal network connectivity.
J Neurophysiol. 2017 Mar 1;117(3):1014-1029. doi: 10.1152/jn.00638.2016. Epub 2016 Dec 14.
5
Phrenic motor outputs in response to bronchopulmonary C-fibre activation following chronic cervical spinal cord injury.
J Physiol. 2016 Oct 15;594(20):6009-6024. doi: 10.1113/JP272287. Epub 2016 Jun 3.
6
Synaptic pathways to phrenic motoneurons are enhanced by chronic intermittent hypoxia after cervical spinal cord injury.
J Neurosci. 2003 Apr 1;23(7):2993-3000. doi: 10.1523/JNEUROSCI.23-07-02993.2003.
7
Phrenic motoneuron discharge patterns following chronic cervical spinal cord injury.
Exp Neurol. 2013 Nov;249:20-32. doi: 10.1016/j.expneurol.2013.08.003. Epub 2013 Aug 13.
9
Phrenic motoneuron discharge patterns during hypoxia-induced short-term potentiation in rats.
J Neurophysiol. 2009 Oct;102(4):2184-93. doi: 10.1152/jn.00399.2009. Epub 2009 Aug 5.

引用本文的文献

1
Targeting Spinal Interneurons for Respiratory Recovery After Spinal Cord Injury.
Cells. 2025 Feb 15;14(4):288. doi: 10.3390/cells14040288.
2
A cholinergic spinal pathway for the adaptive control of breathing.
bioRxiv. 2025 Jan 20:2025.01.20.633641. doi: 10.1101/2025.01.20.633641.
3
Respiratory Training and Plasticity After Cervical Spinal Cord Injury.
Front Cell Neurosci. 2021 Sep 21;15:700821. doi: 10.3389/fncel.2021.700821. eCollection 2021.
5
Targeted activation of spinal respiratory neural circuits.
Exp Neurol. 2020 Jun;328:113256. doi: 10.1016/j.expneurol.2020.113256. Epub 2020 Feb 19.
6
Role of Propriospinal Neurons in Control of Respiratory Muscles and Recovery of Breathing Following Injury.
Front Syst Neurosci. 2020 Jan 17;13:84. doi: 10.3389/fnsys.2019.00084. eCollection 2019.
7
Mid-cervical interneuron networks following high cervical spinal cord injury.
Respir Physiol Neurobiol. 2020 Jan;271:103305. doi: 10.1016/j.resp.2019.103305. Epub 2019 Sep 22.
8
The Neuroplastic and Therapeutic Potential of Spinal Interneurons in the Injured Spinal Cord.
Trends Neurosci. 2018 Sep;41(9):625-639. doi: 10.1016/j.tins.2018.06.004. Epub 2018 Jul 17.
9
Intraspinal microstimulation for respiratory muscle activation.
Exp Neurol. 2018 Apr;302:93-103. doi: 10.1016/j.expneurol.2017.12.014. Epub 2018 Jan 2.
10
Task-dependent output of human parasternal intercostal motor units across spinal levels.
J Physiol. 2017 Dec 1;595(23):7081-7092. doi: 10.1113/JP274866. Epub 2017 Oct 13.

本文引用的文献

1
The neural control of human inspiratory muscles.
Prog Brain Res. 2014;209:295-308. doi: 10.1016/B978-0-444-63274-6.00015-1.
2
Unexpected benefits of intermittent hypoxia: enhanced respiratory and nonrespiratory motor function.
Physiology (Bethesda). 2014 Jan;29(1):39-48. doi: 10.1152/physiol.00012.2013.
3
Daily intermittent hypoxia enhances walking after chronic spinal cord injury: a randomized trial.
Neurology. 2014 Jan 14;82(2):104-13. doi: 10.1212/01.WNL.0000437416.34298.43. Epub 2013 Nov 27.
4
Long-term facilitation of ventilation in humans with chronic spinal cord injury.
Am J Respir Crit Care Med. 2014 Jan 1;189(1):57-65. doi: 10.1164/rccm.201305-0848OC.
5
Phrenic motoneuron discharge patterns following chronic cervical spinal cord injury.
Exp Neurol. 2013 Nov;249:20-32. doi: 10.1016/j.expneurol.2013.08.003. Epub 2013 Aug 13.
7
Hypoxia-induced phrenic long-term facilitation: emergent properties.
Ann N Y Acad Sci. 2013 Mar;1279:143-53. doi: 10.1111/nyas.12085.
8
Diaphragm activation via high frequency spinal cord stimulation in a rodent model of spinal cord injury.
Exp Neurol. 2013 Sep;247:689-93. doi: 10.1016/j.expneurol.2013.03.006. Epub 2013 Mar 13.
9
Motoneuron firing patterns underlying fast oscillations in phrenic nerve discharge in the rat.
J Neurophysiol. 2012 Oct;108(8):2134-43. doi: 10.1152/jn.00292.2012. Epub 2012 Jul 18.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验