Suppr超能文献

多个高光谱数据集的同步分解:视网膜色素上皮中未知荧光团的信号恢复

Simultaneous decomposition of multiple hyperspectral data sets: signal recovery of unknown fluorophores in the retinal pigment epithelium.

作者信息

Smith R Theodore, Post Robert, Johri Ansh, Lee Michele D, Ablonczy Zsolt, Curcio Christine A, Ach Thomas, Sajda Paul

机构信息

Department of Ophthalmology, New York University School of Medicine, 462 First Avenue - NBV 5N18, New York, NY 10016, USA.

Department of Ophthalmology, Medical University of South Carolina, 167 Ashley Avenue MSC676, Charleston, SC 29425, USA.

出版信息

Biomed Opt Express. 2014 Nov 6;5(12):4171-85. doi: 10.1364/BOE.5.004171. eCollection 2014 Dec 1.

Abstract

Upon excitation with different wavelengths of light, biological tissues emit distinct but related autofluorescence signals. We used non-negative matrix factorization (NMF) to simultaneously decompose co-registered hyperspectral emission data from human retinal pigment epithelium/Bruch's membrane specimens illuminated with 436 and 480 nm light. NMF analysis was initialized with Gaussian mixture model fits and constrained to provide identical abundance images for the two excitation wavelengths. Spectra recovered this way were smoother than those obtained separately; fluorophore abundances more clearly localized within tissue compartments. These studies provide evidence that leveraging multiple co-registered hyperspectral emission data sets is preferential for identifying biologically relevant fluorophore information.

摘要

在用不同波长的光激发时,生物组织会发出独特但相关的自发荧光信号。我们使用非负矩阵分解(NMF)来同时分解来自用436和480 nm光照射的人视网膜色素上皮/布鲁赫膜标本的共配准高光谱发射数据。NMF分析用高斯混合模型拟合初始化,并进行约束以提供两个激发波长相同的丰度图像。以这种方式恢复的光谱比单独获得的光谱更平滑;荧光团丰度在组织隔室内的定位更清晰。这些研究提供了证据,表明利用多个共配准的高光谱发射数据集对于识别生物学相关的荧光团信息是更可取的。

相似文献

1
Simultaneous decomposition of multiple hyperspectral data sets: signal recovery of unknown fluorophores in the retinal pigment epithelium.
Biomed Opt Express. 2014 Nov 6;5(12):4171-85. doi: 10.1364/BOE.5.004171. eCollection 2014 Dec 1.
4
Tensor decomposition of hyperspectral images to study autofluorescence in age-related macular degeneration.
Med Image Anal. 2019 Aug;56:96-109. doi: 10.1016/j.media.2019.05.009. Epub 2019 May 31.
8
Demystifying autofluorescence with excitation-scanning hyperspectral imaging.
Proc SPIE Int Soc Opt Eng. 2018 Jan-Feb;10497. doi: 10.1117/12.2290818. Epub 2018 Feb 20.

引用本文的文献

1
Hyperspectral retinal imaging biomarkers of ocular and systemic diseases.
Eye (Lond). 2025 Mar;39(4):667-672. doi: 10.1038/s41433-024-03135-9. Epub 2024 May 22.
4
Hyperspectral Imaging and the Retina: Worth the Wave?
Transl Vis Sci Technol. 2020 Aug 5;9(9):9. doi: 10.1167/tvst.9.9.9. eCollection 2020 Aug.
5
Fundus Autofluorescence Lifetimes and Spectral Features of Soft Drusen and Hyperpigmentation in Age-Related Macular Degeneration.
Transl Vis Sci Technol. 2020 Apr 24;9(5):20. doi: 10.1167/tvst.9.5.20. eCollection 2020 Apr.
6
Translational Retinal Imaging.
Asia Pac J Ophthalmol (Phila). 2020 May-Jun;9(3):269-277. doi: 10.1097/APO.0000000000000292.
7
Snapshot hyperspectral light field imaging using image mapping spectrometry.
Opt Lett. 2020 Feb 1;45(3):772-775. doi: 10.1364/OL.382088.
9
A Dye-Free Analog to Retinal Angiography Using Hyperspectral Unmixing to Retrieve Oxyhemoglobin Abundance.
Transl Vis Sci Technol. 2019 Jun 21;8(3):44. doi: 10.1167/tvst.8.3.44. eCollection 2019 May.
10
Tensor decomposition of hyperspectral images to study autofluorescence in age-related macular degeneration.
Med Image Anal. 2019 Aug;56:96-109. doi: 10.1016/j.media.2019.05.009. Epub 2019 May 31.

本文引用的文献

1
Quantitative autofluorescence and cell density maps of the human retinal pigment epithelium.
Invest Ophthalmol Vis Sci. 2014 Jul 17;55(8):4832-41. doi: 10.1167/iovs.14-14802.
2
The utilization of fluorescence to identify the components of lipofuscin by imaging mass spectrometry.
Proteomics. 2014 Apr;14(7-8):936-44. doi: 10.1002/pmic.201300406. Epub 2014 Mar 5.
3
Efficient blind spectral unmixing of fluorescently labeled samples using multi-layer non-negative matrix factorization.
PLoS One. 2013 Nov 8;8(11):e78504. doi: 10.1371/journal.pone.0078504. eCollection 2013.
6
New insights into retinoid metabolism and cycling within the retina.
Prog Retin Eye Res. 2013 Jan;32:48-63. doi: 10.1016/j.preteyeres.2012.09.002. Epub 2012 Oct 11.
7
Autofluorescence imaging of human RPE cell granules using structured illumination microscopy.
Br J Ophthalmol. 2012 Aug;96(8):1141-4. doi: 10.1136/bjophthalmol-2012-301547. Epub 2012 Jul 3.
8
The bisretinoids of retinal pigment epithelium.
Prog Retin Eye Res. 2012 Mar;31(2):121-35. doi: 10.1016/j.preteyeres.2011.12.001. Epub 2011 Dec 22.
9
A novel bisretinoid of retina is an adduct on glycerophosphoethanolamine.
Invest Ophthalmol Vis Sci. 2011 Nov 25;52(12):9084-90. doi: 10.1167/iovs.11-8632.
10
In vivo snapshot hyperspectral image analysis of age-related macular degeneration.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:5363-6. doi: 10.1109/IEMBS.2010.5626463.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验