IEEE Trans Neural Netw Learn Syst. 2015 Oct;26(10):2357-69. doi: 10.1109/TNNLS.2014.2382123. Epub 2015 Jan 6.
For large-scale classification tasks, especially in the classification of images, additive kernels have shown a state-of-the-art accuracy. However, even with the recent development of fast algorithms, learning speed and the ability to handle large-scale tasks are still open problems. This paper proposes algorithms for large-scale support vector machines (SVM) classification and other tasks using additive kernels. First, a linear regression SVM framework for general nonlinear kernel is proposed using linear regression to approximate gradient computations in the learning process. Second, we propose a power mean SVM (PmSVM) algorithm for all additive kernels using nonsymmetric explanatory variable functions. This nonsymmetric kernel approximation has advantages over the existing methods: 1) it does not require closed-form Fourier transforms and 2) it does not require extra training for the approximation either. Compared on benchmark large-scale classification data sets with millions of examples or millions of dense feature dimensions, PmSVM has achieved the highest learning speed and highest accuracy among recent algorithms in most cases.
对于大规模分类任务,特别是图像分类,加性核函数已经显示出了最先进的准确性。然而,即使是在最近快速算法的发展下,学习速度和处理大规模任务的能力仍然是悬而未决的问题。本文提出了使用加性核函数的大规模支持向量机 (SVM) 分类和其他任务的算法。首先,提出了一种使用线性回归在学习过程中近似梯度计算的一般非线性核的线性回归 SVM 框架。其次,我们提出了一种使用非对称解释变量函数的所有加性核的幂平均 SVM (PmSVM) 算法。这种非对称核逼近方法优于现有的方法:1)它不需要闭式傅里叶变换,2)也不需要额外的近似训练。在具有数百万个示例或数百万个密集特征维度的基准大规模分类数据集上进行比较,在大多数情况下,PmSVM 在最近的算法中实现了最高的学习速度和最高的准确性。