Dmochowski Jacek P, Greaves Alex S, Norcia Anthony M
Department of Psychology, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA.
Department of Psychology, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA.
Neuroimage. 2015 Apr 1;109:63-72. doi: 10.1016/j.neuroimage.2014.12.078. Epub 2015 Jan 9.
Due to their high signal-to-noise ratio (SNR) and robustness to artifacts, steady state visual evoked potentials (SSVEPs) are a popular technique for studying neural processing in the human visual system. SSVEPs are conventionally analyzed at individual electrodes or linear combinations of electrodes which maximize some variant of the SNR. Here we exploit the fundamental assumption of evoked responses--reproducibility across trials--to develop a technique that extracts a small number of high SNR, maximally reliable SSVEP components. This novel spatial filtering method operates on an array of Fourier coefficients and projects the data into a low-dimensional space in which the trial-to-trial spectral covariance is maximized. When applied to two sample data sets, the resulting technique recovers physiologically plausible components (i.e., the recovered topographies match the lead fields of the underlying sources) while drastically reducing the dimensionality of the data (i.e., more than 90% of the trial-to-trial reliability is captured in the first four components). Moreover, the proposed technique achieves a higher SNR than that of the single-best electrode or the Principal Components. We provide a freely-available MATLAB implementation of the proposed technique, herein termed "Reliable Components Analysis".
由于具有高信噪比(SNR)以及对伪迹的鲁棒性,稳态视觉诱发电位(SSVEPs)是研究人类视觉系统神经处理的一种常用技术。传统上,SSVEPs是在单个电极或使某种SNR变体最大化的电极线性组合上进行分析的。在此,我们利用诱发反应的基本假设——各次试验间的可重复性——来开发一种技术,该技术可提取少量高SNR、最大程度可靠的SSVEP成分。这种新颖的空间滤波方法作用于傅里叶系数数组,并将数据投影到一个低维空间,在该空间中各次试验间的频谱协方差最大化。当应用于两个样本数据集时,所得技术可恢复生理上合理的成分(即,恢复的地形图与潜在源的导联场匹配),同时大幅降低数据的维度(即,超过90%的各次试验间可靠性在前四个成分中得以体现)。此外,所提出的技术比最佳单电极或主成分分析具有更高的SNR。我们提供了所提出技术的免费MATLAB实现,在此称为“可靠成分分析”。