Satagopan Jaya M, Olson Sara H, Elston Robert C
1 Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
2 Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA.
Stat Methods Med Res. 2017 Apr;26(2):1021-1038. doi: 10.1177/0962280214567140. Epub 2015 Jan 12.
This paper is concerned with the estimation of the logarithm of disease odds (log odds) when evaluating two risk factors, whether or not interactions are present. Statisticians define interaction as a departure from an additive model on a certain scale of measurement of the outcome. Certain interactions, known as removable interactions, may be eliminated by fitting an additive model under an invertible transformation of the outcome. This can potentially provide more precise estimates of log odds than fitting a model with interaction terms. In practice, we may also encounter nonremovable interactions. The model must then include interaction terms, regardless of the choice of the scale of the outcome. However, in practical settings, we do not know at the outset whether an interaction exists, and if so whether it is removable or nonremovable. Rather than trying to decide on significance levels to test for the existence of removable and nonremovable interactions, we develop a Bayes estimator based on a squared error loss function. We demonstrate the favorable bias-variance trade-offs of our approach using simulations, and provide empirical illustrations using data from three published endometrial cancer case-control studies. The methods are implemented in an R program, and available freely at http://www.mskcc.org/biostatistics/~satagopj .
本文关注在评估两个风险因素时疾病比值对数(对数比值)的估计,无论是否存在交互作用。统计学家将交互作用定义为在结果的特定测量尺度上偏离加法模型。某些交互作用,称为可消除交互作用,可以通过在结果的可逆变换下拟合加法模型来消除。与拟合包含交互项的模型相比,这有可能提供更精确的对数比值估计。在实际中,我们也可能遇到不可消除的交互作用。此时模型必须包含交互项,而不管结果尺度的选择如何。然而,在实际情况下,我们一开始并不知道是否存在交互作用,如果存在,它是可消除的还是不可消除的。我们不是试图确定用于检验可消除和不可消除交互作用存在性的显著性水平,而是基于平方误差损失函数开发了一种贝叶斯估计器。我们通过模拟展示了我们方法有利的偏差 - 方差权衡,并使用来自三项已发表的子宫内膜癌病例对照研究的数据提供了实证说明。这些方法在一个R程序中实现,可在http://www.mskcc.org/biostatistics/~satagopj免费获取。