Suppr超能文献

病例对照研究中对数优势比的统计交互作用与贝叶斯估计

Statistical interactions and Bayes estimation of log odds in case-control studies.

作者信息

Satagopan Jaya M, Olson Sara H, Elston Robert C

机构信息

1 Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.

2 Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA.

出版信息

Stat Methods Med Res. 2017 Apr;26(2):1021-1038. doi: 10.1177/0962280214567140. Epub 2015 Jan 12.

Abstract

This paper is concerned with the estimation of the logarithm of disease odds (log odds) when evaluating two risk factors, whether or not interactions are present. Statisticians define interaction as a departure from an additive model on a certain scale of measurement of the outcome. Certain interactions, known as removable interactions, may be eliminated by fitting an additive model under an invertible transformation of the outcome. This can potentially provide more precise estimates of log odds than fitting a model with interaction terms. In practice, we may also encounter nonremovable interactions. The model must then include interaction terms, regardless of the choice of the scale of the outcome. However, in practical settings, we do not know at the outset whether an interaction exists, and if so whether it is removable or nonremovable. Rather than trying to decide on significance levels to test for the existence of removable and nonremovable interactions, we develop a Bayes estimator based on a squared error loss function. We demonstrate the favorable bias-variance trade-offs of our approach using simulations, and provide empirical illustrations using data from three published endometrial cancer case-control studies. The methods are implemented in an R program, and available freely at http://www.mskcc.org/biostatistics/~satagopj .

摘要

本文关注在评估两个风险因素时疾病比值对数(对数比值)的估计,无论是否存在交互作用。统计学家将交互作用定义为在结果的特定测量尺度上偏离加法模型。某些交互作用,称为可消除交互作用,可以通过在结果的可逆变换下拟合加法模型来消除。与拟合包含交互项的模型相比,这有可能提供更精确的对数比值估计。在实际中,我们也可能遇到不可消除的交互作用。此时模型必须包含交互项,而不管结果尺度的选择如何。然而,在实际情况下,我们一开始并不知道是否存在交互作用,如果存在,它是可消除的还是不可消除的。我们不是试图确定用于检验可消除和不可消除交互作用存在性的显著性水平,而是基于平方误差损失函数开发了一种贝叶斯估计器。我们通过模拟展示了我们方法有利的偏差 - 方差权衡,并使用来自三项已发表的子宫内膜癌病例对照研究的数据提供了实证说明。这些方法在一个R程序中实现,可在http://www.mskcc.org/biostatistics/~satagopj免费获取。

相似文献

1
Statistical interactions and Bayes estimation of log odds in case-control studies.
Stat Methods Med Res. 2017 Apr;26(2):1021-1038. doi: 10.1177/0962280214567140. Epub 2015 Jan 12.
2
Evaluation of removable statistical interaction for binary traits.
Stat Med. 2013 Mar 30;32(7):1164-90. doi: 10.1002/sim.5628. Epub 2012 Sep 27.
3
Mining pharmacovigilance data using Bayesian logistic regression with James-Stein type shrinkage estimation.
J Biopharm Stat. 2010 Sep;20(5):998-1012. doi: 10.1080/10543401003619056.
5
Double Robust Efficient Estimators of Longitudinal Treatment Effects: Comparative Performance in Simulations and a Case Study.
Int J Biostat. 2019 Feb 26;15(2):/j/ijb.2019.15.issue-2/ijb-2017-0054/ijb-2017-0054.xml. doi: 10.1515/ijb-2017-0054.
9
Monte Carlo local likelihood approximation.
Biostatistics. 2019 Jan 1;20(1):164-179. doi: 10.1093/biostatistics/kxx070.
10
Robust distributed lag models using data adaptive shrinkage.
Biostatistics. 2018 Oct 1;19(4):461-478. doi: 10.1093/biostatistics/kxx041.

引用本文的文献

1
Sunburn, sun exposure, and sun sensitivity in the Study of Nevi in Children.
Ann Epidemiol. 2015 Nov;25(11):839-43. doi: 10.1016/j.annepidem.2015.05.004. Epub 2015 May 23.

本文引用的文献

1
Collections of simultaneously altered genes as biomarkers of cancer cell drug response.
Cancer Res. 2013 Mar 15;73(6):1699-708. doi: 10.1158/0008-5472.CAN-12-3122. Epub 2013 Jan 21.
2
Evaluation of removable statistical interaction for binary traits.
Stat Med. 2013 Mar 30;32(7):1164-90. doi: 10.1002/sim.5628. Epub 2012 Sep 27.
3
Commentary: thoughts on assessing evidence for gene by environment interaction.
Int J Epidemiol. 2012 Jun;41(3):705-7. doi: 10.1093/ije/dys048. Epub 2012 May 16.
4
Systematic identification of genomic markers of drug sensitivity in cancer cells.
Nature. 2012 Mar 28;483(7391):570-5. doi: 10.1038/nature11005.
5
Interaction and exposure modification: are we asking the right questions?
Am J Epidemiol. 2012 Apr 1;175(7):602-5. doi: 10.1093/aje/kwr495. Epub 2012 Feb 3.
7
Personalized estimates of breast cancer risk in clinical practice and public health.
Stat Med. 2011 May 10;30(10):1090-104. doi: 10.1002/sim.4187. Epub 2011 Feb 21.
8
The meaning of interaction.
Hum Hered. 2010;70(4):269-77. doi: 10.1159/000321967. Epub 2010 Dec 8.
9
Statistical interaction in human genetics: how should we model it if we are looking for biological interaction?
Nat Rev Genet. 2011 Jan;12(1):74. doi: 10.1038/nrg2579-c2. Epub 2010 Nov 23.
10
Prioritizing GWAS results: A review of statistical methods and recommendations for their application.
Am J Hum Genet. 2010 Jan;86(1):6-22. doi: 10.1016/j.ajhg.2009.11.017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验