Suppr超能文献

使用一种测量既往不依从情况的新型电子工具预测门诊结肠镜检查的不依从性。

Predicting Non-Adherence with Outpatient Colonoscopy Using a Novel Electronic Tool that Measures Prior Non-Adherence.

作者信息

Blumenthal Daniel M, Singal Gaurav, Mangla Shikha S, Macklin Eric A, Chung Daniel C

机构信息

Department of Internal Medicine, Massachusetts General Hospital, Boston, MA, USA.

出版信息

J Gen Intern Med. 2015 Jun;30(6):724-31. doi: 10.1007/s11606-014-3165-6. Epub 2015 Jan 14.

Abstract

BACKGROUND

Accurately predicting the risk of no-show for a scheduled colonoscopy can help target interventions to improve compliance with colonoscopy, and thereby reduce the disease burden of colorectal cancer and enhance the utilization of resources within endoscopy units.

OBJECTIVES

We aimed to utilize information available in an electronic medical record (EMR) and endoscopy scheduling system to create a predictive model for no-show risk, and to simultaneously evaluate the role for natural language processing (NLP) in developing such a model.

DESIGN

This was a retrospective observational study using discovery and validation phases to design a colonoscopy non-adherence prediction model. An NLP-derived variable called the Non-Adherence Ratio ("NAR") was developed, validated, and included in the model.

PARTICIPANTS

Patients scheduled for outpatient colonoscopy at an Academic Medical Center (AMC) that is part of a multi-hospital health system, 2009 to 2011, were included in the study.

MAIN MEASURES

Odds ratios for non-adherence were calculated for all variables in the discovery cohort, and an Area Under the Receiver Operating Curve (AUC) was calculated for the final non-adherence prediction model.

KEY RESULTS

The non-adherence model included six variables: 1) gender; 2) history of psychiatric illness, 3) NAR; 4) wait time in months; 5) number of prior missed endoscopies; and 6) education level. The model achieved discrimination in the validation cohort (AUC= =70.2 %). At a threshold non-adherence score of 0.46, the model's sensitivity and specificity were 33 % and 92 %, respectively. Removing the NAR from the model significantly reduced its predictive power (AUC = 64.3 %, difference = 5.9 %, p < 0.001).

CONCLUSIONS

A six-variable model using readily available clinical and demographic information demonstrated accuracy for predicting colonoscopy non-adherence. The NAR, a novel variable developed using NLP technology, significantly strengthened this model's predictive power.

摘要

背景

准确预测结肠镜检查预约失约风险有助于确定干预措施,以提高结肠镜检查的依从性,从而减轻结直肠癌的疾病负担,并提高内镜科室资源的利用率。

目的

我们旨在利用电子病历(EMR)和内镜检查预约系统中的可用信息,创建一个失约风险预测模型,并同时评估自然语言处理(NLP)在开发此类模型中的作用。

设计

这是一项回顾性观察研究,使用发现和验证阶段来设计结肠镜检查不依从预测模型。一个名为不依从率(“NAR”)的NLP衍生变量被开发、验证并纳入模型。

参与者

2009年至2011年在一家多医院卫生系统所属的学术医疗中心(AMC)预约门诊结肠镜检查的患者被纳入研究。

主要测量指标

计算发现队列中所有变量的不依从比值比,并计算最终不依从预测模型的受试者操作特征曲线下面积(AUC)。

关键结果

不依从模型包括六个变量:1)性别;2)精神疾病史;3)NAR;4)等待月数;5)既往错过内镜检查的次数;6)教育水平。该模型在验证队列中具有区分能力(AUC = 70.2%)。在不依从评分阈值为0.46时,该模型的敏感性和特异性分别为33%和92%。从模型中去除NAR会显著降低其预测能力(AUC = 64.3%,差异 = 5.9%,p < 0.001)。

结论

一个使用易于获得的临床和人口统计学信息的六变量模型在预测结肠镜检查不依从方面显示出准确性。NAR是使用NLP技术开发的一个新变量,显著增强了该模型的预测能力。

相似文献

1
Predicting Non-Adherence with Outpatient Colonoscopy Using a Novel Electronic Tool that Measures Prior Non-Adherence.
J Gen Intern Med. 2015 Jun;30(6):724-31. doi: 10.1007/s11606-014-3165-6. Epub 2015 Jan 14.
3
Physician Non-adherence to Colonoscopy Interval Guidelines in the Veterans Affairs Healthcare System.
Gastroenterology. 2015 Oct;149(4):938-51. doi: 10.1053/j.gastro.2015.06.026. Epub 2015 Jun 26.
4
A prediction model for advanced colorectal neoplasia in an asymptomatic screening population.
PLoS One. 2017 Aug 25;12(8):e0181040. doi: 10.1371/journal.pone.0181040. eCollection 2017.
5
Clinical decision support with natural language processing facilitates determination of colonoscopy surveillance intervals.
Clin Gastroenterol Hepatol. 2014 Jul;12(7):1130-6. doi: 10.1016/j.cgh.2013.11.025. Epub 2013 Dec 4.
8
Utilization of Census Tract-Based Neighborhood Poverty Rates to Predict Non-adherence to Screening Colonoscopy.
Dig Dis Sci. 2019 Sep;64(9):2505-2513. doi: 10.1007/s10620-019-05585-8. Epub 2019 Mar 14.
10
Development of an Automated Algorithm to Generate Guideline-based Recommendations for Follow-up Colonoscopy.
Clin Gastroenterol Hepatol. 2020 Aug;18(9):2038-2045.e1. doi: 10.1016/j.cgh.2019.10.013. Epub 2019 Oct 14.

引用本文的文献

1
Emerging applications of NLP and large language models in gastroenterology and hepatology: a systematic review.
Front Med (Lausanne). 2025 Jan 22;11:1512824. doi: 10.3389/fmed.2024.1512824. eCollection 2024.
2
A foundation systematic review of natural language processing applied to gastroenterology & hepatology.
BMC Gastroenterol. 2025 Feb 6;25(1):58. doi: 10.1186/s12876-025-03608-5.
3
Decision analysis framework for predicting no-shows to appointments using machine learning algorithms.
BMC Health Serv Res. 2024 Jan 5;24(1):37. doi: 10.1186/s12913-023-10418-6.
5
Colorectal cancer screening barriers and facilitators among Jordanians: A cross-sectional study.
Prev Med Rep. 2023 Feb 13;32:102149. doi: 10.1016/j.pmedr.2023.102149. eCollection 2023 Apr.
8
Precision Patient Navigation to Improve Rates of Follow-up Colonoscopy, An Individual Randomized Effectiveness Trial.
Cancer Epidemiol Biomarkers Prev. 2021 Dec;30(12):2327-2333. doi: 10.1158/1055-9965.EPI-20-1793. Epub 2021 Sep 28.
10
Evaluation of Patient No-Shows in a Tertiary Hospital: Focusing on Modes of Appointment-Making and Type of Appointment.
Int J Environ Res Public Health. 2021 Mar 22;18(6):3288. doi: 10.3390/ijerph18063288.

本文引用的文献

1
Screening colonoscopy and risk for incident late-stage colorectal cancer diagnosis in average-risk adults: a nested case-control study.
Ann Intern Med. 2013 Mar 5;158(5 Pt 1):312-20. doi: 10.7326/0003-4819-158-5-201303050-00003.
2
The economic impact of a patient navigator program to increase screening colonoscopy.
Cancer. 2012 Dec 1;118(23):5982-8. doi: 10.1002/cncr.27595. Epub 2012 May 17.
3
Colonoscopic polypectomy and long-term prevention of colorectal-cancer deaths.
N Engl J Med. 2012 Feb 23;366(8):687-96. doi: 10.1056/NEJMoa1100370.
4
Developing a natural language processing application for measuring the quality of colonoscopy procedures.
J Am Med Inform Assoc. 2011 Dec;18 Suppl 1(Suppl 1):i150-6. doi: 10.1136/amiajnl-2011-000431. Epub 2011 Sep 21.
6
Natural language processing: an introduction.
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):544-51. doi: 10.1136/amiajnl-2011-000464.
8
Overuse of screening colonoscopy in the Medicare population.
Arch Intern Med. 2011 Aug 8;171(15):1335-43. doi: 10.1001/archinternmed.2011.212. Epub 2011 May 9.
9
Predictors of compliance with free endoscopic colorectal cancer screening in uninsured adults.
J Gen Intern Med. 2011 Aug;26(8):875-80. doi: 10.1007/s11606-011-1716-7. Epub 2011 Apr 16.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验