Suppr超能文献

飞秒受激拉曼光谱的随机刘维尔方程。

Stochastic Liouville equations for femtosecond stimulated Raman spectroscopy.

作者信息

Agarwalla Bijay Kumar, Ando Hideo, Dorfman Konstantin E, Mukamel Shaul

机构信息

Department of Chemistry, University of California, Irvine, California 92617, USA.

出版信息

J Chem Phys. 2015 Jan 14;142(2):024115. doi: 10.1063/1.4905139.

Abstract

Electron and vibrational dynamics of molecules are commonly studied by subjecting them to two interactions with a fast actinic pulse that prepares them in a nonstationary state and after a variable delay period T, probing them with a Raman process induced by a combination of a broadband and a narrowband pulse. This technique, known as femtosecond stimulated Raman spectroscopy (FSRS), can effectively probe time resolved vibrational resonances. We show how FSRS signals can be modeled and interpreted using the stochastic Liouville equations (SLE), originally developed for NMR lineshapes. The SLE provide a convenient simulation protocol that can describe complex dynamics caused by coupling to collective bath coordinates at much lower cost than a full dynamical simulation. The origin of the dispersive features that appear when there is no separation of timescales between vibrational variations and the dephasing time is clarified.

摘要

分子的电子和振动动力学通常通过使其与快速光化脉冲进行两种相互作用来研究,该脉冲将它们制备到非稳态,在可变延迟时间T之后,用宽带和窄带脉冲组合诱导的拉曼过程对其进行探测。这种技术称为飞秒受激拉曼光谱(FSRS),可以有效地探测时间分辨的振动共振。我们展示了如何使用最初为核磁共振线形开发的随机刘维尔方程(SLE)对FSRS信号进行建模和解释。SLE提供了一种方便的模拟协议,该协议可以以比完全动力学模拟低得多的成本描述由耦合到集体浴坐标引起的复杂动力学。阐明了在振动变化和退相时间之间不存在时间尺度分离时出现的色散特征的起源。

相似文献

1
Stochastic Liouville equations for femtosecond stimulated Raman spectroscopy.
J Chem Phys. 2015 Jan 14;142(2):024115. doi: 10.1063/1.4905139.
2
Theory of femtosecond stimulated Raman spectroscopy.
J Chem Phys. 2004 Aug 22;121(8):3632-42. doi: 10.1063/1.1777214.
4
Femtosecond Stimulated Raman Spectroscopy.
Chemphyschem. 2016 May 4;17(9):1224-51. doi: 10.1002/cphc.201600104. Epub 2016 Mar 18.
6
Femtosecond stimulated Raman spectroscopy.
Annu Rev Phys Chem. 2007;58:461-88. doi: 10.1146/annurev.physchem.58.032806.104456.
8
Time-resolved broadband Raman spectroscopies: a unified six-wave-mixing representation.
J Chem Phys. 2013 Sep 28;139(12):124113. doi: 10.1063/1.4821228.
9
Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy.
J Phys Chem Lett. 2011 May 19;2(10):1199-203. doi: 10.1021/jz200498z. Epub 2011 Apr 29.
10
Quantum theory of (femtosecond) time-resolved stimulated Raman scattering.
J Chem Phys. 2008 Apr 14;128(14):144114. doi: 10.1063/1.2888551.

引用本文的文献

1
Absolute excited state molecular geometries revealed by resonance Raman signals.
Nat Commun. 2022 Dec 15;13(1):7770. doi: 10.1038/s41467-022-35099-3.
2
Accessing Excited State Molecular Vibrations by Femtosecond Stimulated Raman Spectroscopy.
J Phys Chem Lett. 2020 Sep 17;11(18):7805-7813. doi: 10.1021/acs.jpclett.0c01971. Epub 2020 Sep 3.

本文引用的文献

1
Solvation Stokes-Shift Dynamics Studied by Chirped Femtosecond Laser Pulses.
J Phys Chem Lett. 2012 Sep 6;3(17):2458-64. doi: 10.1021/jz300761x. Epub 2012 Aug 21.
2
Optical Response of Fluorescent Molecules Studied by Synthetic Femtosecond Laser Pulses.
J Phys Chem Lett. 2012 May 17;3(10):1329-35. doi: 10.1021/jz300363t. Epub 2012 May 3.
3
Femtosecond stimulated Raman spectroscopy of the cyclobutane thymine dimer repair mechanism: a computational study.
J Am Chem Soc. 2014 Oct 22;136(42):14801-10. doi: 10.1021/ja5063955. Epub 2014 Oct 9.
4
Ultrafast X-ray Auger probing of photoexcited molecular dynamics.
Nat Commun. 2014 Jun 23;5:4235. doi: 10.1038/ncomms5235.
5
Vibrationally coherent crossing and coupling of electronic states during internal conversion in β-carotene.
Phys Rev Lett. 2014 May 16;112(19):198302. doi: 10.1103/PhysRevLett.112.198302. Epub 2014 May 15.
6
Coherent-control of linear signals: frequency-domain analysis.
J Chem Phys. 2013 Oct 28;139(16):164113. doi: 10.1063/1.4824857.
7
Time-resolved broadband Raman spectroscopies: a unified six-wave-mixing representation.
J Chem Phys. 2013 Sep 28;139(12):124113. doi: 10.1063/1.4821228.
8
Highlighting short-lived excited electronic states with pump-degenerate-four-wave-mixing.
J Chem Phys. 2013 Aug 21;139(7):074202. doi: 10.1063/1.4818164.
9
Mapping multidimensional excited state dynamics using pump-impulsive-vibrational-spectroscopy and pump-degenerate-four-wave-mixing.
Phys Chem Chem Phys. 2013 Sep 14;15(34):14487-501. doi: 10.1039/c3cp50871d. Epub 2013 Jul 29.
10
Broadband infrared and Raman probes of excited-state vibrational molecular dynamics: simulation protocols based on loop diagrams.
Phys Chem Chem Phys. 2013 Aug 7;15(29):12348-59. doi: 10.1039/c3cp51117k. Epub 2013 Jun 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验