Suppr超能文献

基于忆阻器的多层神经网络及其在线梯度下降训练。

Memristor-based multilayer neural networks with online gradient descent training.

出版信息

IEEE Trans Neural Netw Learn Syst. 2015 Oct;26(10):2408-21. doi: 10.1109/TNNLS.2014.2383395. Epub 2015 Jan 14.

Abstract

Learning in multilayer neural networks (MNNs) relies on continuous updating of large matrices of synaptic weights by local rules. Such locality can be exploited for massive parallelism when implementing MNNs in hardware. However, these update rules require a multiply and accumulate operation for each synaptic weight, which is challenging to implement compactly using CMOS. In this paper, a method for performing these update operations simultaneously (incremental outer products) using memristor-based arrays is proposed. The method is based on the fact that, approximately, given a voltage pulse, the conductivity of a memristor will increment proportionally to the pulse duration multiplied by the pulse magnitude if the increment is sufficiently small. The proposed method uses a synaptic circuit composed of a small number of components per synapse: one memristor and two CMOS transistors. This circuit is expected to consume between 2% and 8% of the area and static power of previous CMOS-only hardware alternatives. Such a circuit can compactly implement hardware MNNs trainable by scalable algorithms based on online gradient descent (e.g., backpropagation). The utility and robustness of the proposed memristor-based circuit are demonstrated on standard supervised learning tasks.

摘要

多层神经网络(MNNs)中的学习依赖于通过局部规则连续更新突触权重的大型矩阵。当在硬件中实现 MNNs 时,这种局部性可以被利用来实现大规模并行处理。然而,这些更新规则要求对每个突触权重进行乘法和累加运算,这在使用 CMOS 技术实现时具有挑战性。本文提出了一种使用基于忆阻器的阵列同时执行这些更新操作(增量外积)的方法。该方法基于以下事实:如果增量足够小,则近似地,给定一个电压脉冲,忆阻器的电导率将按脉冲持续时间乘以脉冲幅度的比例递增。所提出的方法使用每个突触由少量组件组成的突触电路:一个忆阻器和两个 CMOS 晶体管。与之前仅使用 CMOS 的硬件替代方案相比,该电路预计将消耗 2%到 8%的面积和静态功率。这样的电路可以紧凑地实现基于在线梯度下降(例如反向传播)的可扩展算法训练的硬件 MNNs。所提出的基于忆阻器的电路的实用性和鲁棒性在标准监督学习任务中得到了证明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验