Suppr超能文献

巢式病例对照研究:是否应该打破匹配?

Nested case-control studies: should one break the matching?

作者信息

Borgan Ørnulf, Keogh Ruth

机构信息

Department of Mathematics, University of Oslo, P.O.Box 1053, Blindern, 0316, Oslo, Norway.

Department of Medical Statistics, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.

出版信息

Lifetime Data Anal. 2015 Oct;21(4):517-41. doi: 10.1007/s10985-015-9319-y. Epub 2015 Jan 23.

Abstract

In a nested case-control study, controls are selected for each case from the individuals who are at risk at the time at which the case occurs. We say that the controls are matched on study time. To adjust for possible confounding, it is common to match on other variables as well. The standard analysis of nested case-control data is based on a partial likelihood which compares the covariates of each case to those of its matched controls. It has been suggested that one may break the matching of nested case-control data and analyse them as case-cohort data using an inverse probability weighted (IPW) pseudo likelihood. Further, when some covariates are available for all individuals in the cohort, multiple imputation (MI) makes it possible to use all available data in the cohort. In the paper we review the standard method and the IPW and MI approaches, and compare their performance using simulations that cover a range of scenarios, including one and two endpoints.

摘要

在一项巢式病例对照研究中,针对每例病例,从病例发生时处于风险中的个体中选取对照。我们称对照在研究时间上进行了匹配。为了调整可能存在的混杂因素,通常也会在其他变量上进行匹配。巢式病例对照数据的标准分析基于部分似然,该部分似然将每个病例的协变量与其匹配的对照的协变量进行比较。有人提出,可以打破巢式病例对照数据的匹配,并使用逆概率加权(IPW)伪似然将其作为病例队列数据进行分析。此外,当队列中所有个体都有一些协变量时,多重填补(MI)使得能够使用队列中的所有可用数据。在本文中,我们回顾了标准方法以及IPW和MI方法,并通过涵盖一系列场景(包括一个和两个终点)的模拟比较了它们的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验