Center for the Environmental Implications of NanoTechnology (CEINT), ‡Department of Civil and Environmental Engineering, §Department of Chemical Engineering, ∥Department of Biomedical Engineering, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States.
Environ Sci Technol. 2015 Feb 17;49(4):2188-98. doi: 10.1021/es505003d. Epub 2015 Feb 6.
Engineered nanoparticles (NPs) released into natural environments will interact with natural organic matter (NOM) or humic substances, which will change their fate and transport behavior. Quantitative predictions of the effects of NOM are difficult because of its heterogeneity and variability. Here, the effects of six types of NOM and molecular weight fractions of each on the aggregation of citrate-stabilized gold NPs are investigated. Correlations of NP aggregation rates with electrophoretic mobility and the molecular weight distribution and chemical attributes of NOM (including UV absorptivity or aromaticity, functional group content, and fluorescence) are assessed. In general, the >100 kg/mol components provide better stability than lower molecular weight components for each type of NOM, and they contribute to the stabilizing effect of the unfractionated NOM even in small proportions. In many cases, unfractionated NOM provided better stability than its separated components, indicating a synergistic effect between the high and low molecular weight fractions for NP stabilization. Weight-averaged molecular weight was the best single explanatory variable for NP aggregation rates across all NOM types and molecular weight fractions. NP aggregation showed poorer correlation with UV absorptivity, but the exponential slope of the UV-vis absorbance spectrum was a better surrogate for molecular weight. Functional group data (including reduced sulfur and total nitrogen content) were explored as possible secondary parameters to explain the strong stabilizing effect of a low molecular weight Pony Lake fulvic acid sample to the gold NPs. These results can inform future correlations and measurement requirements to predict NP attachment in the presence of NOM.
工程纳米颗粒(NPs)释放到自然环境中会与天然有机物(NOM)或腐殖质相互作用,这将改变它们的命运和迁移行为。由于 NOM 的异质性和可变性,定量预测其影响具有一定的难度。在这里,研究了六种 NOM 类型及其每个类型的分子量分数对柠檬酸盐稳定的金 NPs 聚集的影响。评估了 NP 聚集速率与电泳迁移率以及 NOM 的分子量分布和化学特性(包括紫外吸光度或芳香度、官能团含量和荧光)之间的相关性。一般来说,对于每种 NOM,>100kg/mol 的组分比低分子量组分提供更好的稳定性,并且即使在较小的比例下,它们也有助于未分级 NOM 的稳定作用。在许多情况下,未分级 NOM 比其分离成分提供更好的稳定性,这表明高分子量和低分子量分数对 NP 稳定化具有协同作用。重量平均分子量是所有 NOM 类型和分子量分数的 NP 聚集速率的最佳单一解释变量。NP 聚集与紫外吸光度的相关性较差,但紫外-可见吸收光谱的指数斜率是分子量的更好替代物。研究了官能团数据(包括还原硫和总氮含量),以探索其作为可能的次要参数来解释低分子量 Pony Lake 富里酸样品对金 NPs 具有很强稳定作用的原因。这些结果可以为未来的相关性和测量要求提供信息,以预测在 NOM 存在下 NP 的附着。