Suppr超能文献

角膜基质微原纤维

Corneal stroma microfibrils.

作者信息

Hanlon Samuel D, Behzad Ali R, Sakai Lynn Y, Burns Alan R

机构信息

College of Optometry, University of Houston, Houston, TX, 97204, USA.

Imaging and Characterization Core Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.

出版信息

Exp Eye Res. 2015 Mar;132:198-207. doi: 10.1016/j.exer.2015.01.014. Epub 2015 Jan 19.

Abstract

Elastic tissue was first described well over a hundred years ago and has since been identified in nearly every part of the body. In this review, we examine elastic tissue in the corneal stroma with some mention of other ocular structures which have been more thoroughly described in the past. True elastic fibers consist of an elastin core surrounded by fibrillin microfibrils. However, the presence of elastin fibers is not a requirement and some elastic tissue is comprised of non-elastin-containing bundles of microfibrils. Fibers containing a higher relative amount of elastin are associated with greater elasticity and those without elastin, with structural support. Recently it has been shown that the microfibrils, not only serve mechanical roles, but are also involved in cell signaling through force transduction and the release of TGF-β. A well characterized example of elastin-free microfibril bundles (EFMBs) is found in the ciliary zonules which suspend the crystalline lens in the eye. Through contraction of the ciliary muscle they exert enough force to reshape the lens and thereby change its focal point. It is believed that the molecules comprising these fibers do not turn-over and yet retain their tensile strength for the life of the animal. The mechanical properties of the cornea (strength, elasticity, resiliency) would suggest that EFMBs are present there as well. However, many authors have reported that, although present during embryonic and early postnatal development, EFMBs are generally not present in adults. Serial-block-face imaging with a scanning electron microscope enabled 3D reconstruction of elements in murine corneas. Among these elements were found fibers that formed an extensive network throughout the cornea. In single sections these fibers appeared as electron dense patches. Transmission electron microscopy provided additional detail of these patches and showed them to be composed of fibrils (∼10 nm diameter). Immunogold evidence clearly identified these fibrils as fibrillin EFMBs and EFMBs were also observed with TEM (without immunogold) in adult mammals of several species. Evidence of the presence of EFMBs in adult corneas will hopefully pique an interest in further studies that will ultimately improve our understanding of the cornea's biomechanical properties and its capacity to repair.

摘要

弹性组织早在一百多年前就被详细描述过,此后在身体的几乎每个部位都被发现。在本综述中,我们研究角膜基质中的弹性组织,并提及一些过去已有更详尽描述的其他眼部结构。真正的弹性纤维由弹性蛋白核心和原纤维微原纤维环绕组成。然而,弹性纤维的存在并非必要条件,一些弹性组织由不含弹性蛋白的微原纤维束组成。含有相对较多弹性蛋白的纤维具有更大的弹性,而不含弹性蛋白的纤维则提供结构支撑。最近研究表明,微原纤维不仅具有机械作用,还通过力转导和转化生长因子-β(TGF-β)的释放参与细胞信号传导。在悬韧带中可发现一个特征明确的无弹性蛋白微原纤维束(EFMBs)的例子,悬韧带将眼内的晶状体悬吊起来。通过睫状肌的收缩,它们施加足够的力来重塑晶状体,从而改变其焦点。据信,构成这些纤维的分子不会更新换代,但在动物的一生中仍保持其拉伸强度。角膜的机械特性(强度、弹性、弹性恢复能力)表明角膜中也存在EFMBs。然而,许多作者报告称,尽管EFMBs在胚胎期和出生后早期发育阶段存在,但在成年人中通常不存在。利用扫描电子显微镜进行的连续块面成像能够对小鼠角膜中的成分进行三维重建。在这些成分中发现了在整个角膜中形成广泛网络的纤维。在单张切片中,这些纤维表现为电子致密斑。透射电子显微镜提供了这些斑的更多细节,并显示它们由原纤维(直径约10纳米)组成。免疫金标记证据清楚地将这些原纤维鉴定为原纤维蛋白EFMBs,并且在几种成年哺乳动物中也通过透射电子显微镜(无免疫金标记)观察到了EFMBs。成年角膜中存在EFMBs的证据有望激发进一步研究的兴趣,这最终将增进我们对角膜生物力学特性及其修复能力的理解。

相似文献

1
Corneal stroma microfibrils.
Exp Eye Res. 2015 Mar;132:198-207. doi: 10.1016/j.exer.2015.01.014. Epub 2015 Jan 19.
2
Elastic microfibril distribution in the cornea: Differences between normal and keratoconic stroma.
Exp Eye Res. 2017 Jun;159:40-48. doi: 10.1016/j.exer.2017.03.002. Epub 2017 Mar 14.
3
Stretching stimulates fibulin-5 expression and controls microfibril bundles in human periodontal ligament cells.
J Periodontal Res. 2009 Oct;44(5):622-7. doi: 10.1111/j.1600-0765.2008.01170.x. Epub 2008 Oct 22.
5
Microfibrils, elastin fibres and collagen fibres in the human intervertebral disc and bovine tail disc.
J Anat. 2007 Apr;210(4):460-71. doi: 10.1111/j.1469-7580.2007.00707.x.
6
[Expression of the elastic fibers components during the fœtal liver development].
Morphologie. 2010 Nov;94(307):87-92. doi: 10.1016/j.morpho.2010.03.008.
7
Fibrillin microfibrils.
Adv Protein Chem. 2005;70:405-36. doi: 10.1016/S0065-3233(05)70012-7.
8
[Functional histology of dermis].
Ann Dermatol Venereol. 2008 Jan;135(1 Pt 2):1S5-20. doi: 10.1016/S0151-9638(08)70206-0.
10
Expression of fibrillins and tropoelastin by human gingival and periodontal ligament fibroblasts in vitro.
J Periodontal Res. 2002 Feb;37(1):23-8. doi: 10.1034/j.1600-0765.2002.00662.x.

引用本文的文献

3
Structural control of corneal transparency, refractive power and dynamics.
Eye (Lond). 2025 Mar;39(4):644-650. doi: 10.1038/s41433-024-02969-7. Epub 2024 Feb 23.
4
Marfan syndrome in a Ghanaian male: The diagnostic challenges.
Clin Case Rep. 2024 Feb 19;12(2):e8494. doi: 10.1002/ccr3.8494. eCollection 2024 Feb.
5
Collagen XII Regulates Corneal Stromal Structure by Modulating Transforming Growth Factor-β Activity.
Am J Pathol. 2022 Feb;192(2):308-319. doi: 10.1016/j.ajpath.2021.10.014. Epub 2021 Nov 11.
6
Marfan syndrome.
Nat Rev Dis Primers. 2021 Sep 2;7(1):64. doi: 10.1038/s41572-021-00298-7.
9
Composition, structure and function of the corneal stroma.
Exp Eye Res. 2020 Sep;198:108137. doi: 10.1016/j.exer.2020.108137. Epub 2020 Jul 11.
10
Developmental abnormalities in the cornea of a mouse model for Marfan syndrome.
Exp Eye Res. 2020 May;194:108001. doi: 10.1016/j.exer.2020.108001. Epub 2020 Mar 13.

本文引用的文献

1
Expression and regulation of LOXL1 and elastin-related genes in eyes with exfoliation syndrome.
J Glaucoma. 2014 Oct-Nov;23(8 Suppl 1):S48-50. doi: 10.1097/IJG.0000000000000120.
2
The microfibril hypothesis of glaucoma: implications for treatment of elevated intraocular pressure.
J Ocul Pharmacol Ther. 2014 Mar-Apr;30(2-3):170-80. doi: 10.1089/jop.2013.0184. Epub 2014 Feb 12.
3
Ultrastructural and three-dimensional study of post-LASIK ectasia cornea.
Microsc Res Tech. 2014 Jan;77(1):91-8. doi: 10.1002/jemt.22316. Epub 2013 Nov 12.
4
The oxytalan fibre network in the periodontium and its possible mechanical function.
Arch Oral Biol. 2012 Aug;57(8):1003-11. doi: 10.1016/j.archoralbio.2012.06.003. Epub 2012 Jul 9.
5
Dissecting the fibrillin microfibril: structural insights into organization and function.
Structure. 2012 Feb 8;20(2):215-25. doi: 10.1016/j.str.2011.12.008.
6
Latent TGF-β structure and activation.
Nature. 2011 Jun 15;474(7351):343-9. doi: 10.1038/nature10152.
7
The elastin fiber system between and adjacent to collector channels in the human juxtacanalicular tissue.
Invest Ophthalmol Vis Sci. 2011 Jan 5;52(1):45-50. doi: 10.1167/iovs.10-5620. Print 2011 Jan.
8
The molecular basis of corneal transparency.
Exp Eye Res. 2010 Sep;91(3):326-35. doi: 10.1016/j.exer.2010.06.021. Epub 2010 Jul 3.
9
Microfibril structure masks fibrillin-2 in postnatal tissues.
J Biol Chem. 2010 Jun 25;285(26):20242-51. doi: 10.1074/jbc.M109.087031. Epub 2010 Apr 19.
10
Mutations in fibrillin-1 cause congenital scleroderma: stiff skin syndrome.
Sci Transl Med. 2010 Mar 17;2(23):23ra20. doi: 10.1126/scitranslmed.3000488.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验