Suppr超能文献

气味通过对抑制具有不同敏感性的通道进行同时编码。

Simultaneous encoding of odors by channels with diverse sensitivity to inhibition.

作者信息

Hong Elizabeth J, Wilson Rachel I

机构信息

Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.

Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.

出版信息

Neuron. 2015 Feb 4;85(3):573-89. doi: 10.1016/j.neuron.2014.12.040. Epub 2015 Jan 22.

Abstract

Odorant receptors in the periphery map precisely onto olfactory glomeruli ("coding channels") in the brain. However, the odor tuning of a glomerulus is not strongly correlated with its spatial position. This raises the question of whether lateral inhibition between glomeruli is specific or nonspecific. Here we show that, in the Drosophila brain, focal activation of even a single glomerulus recruits GABAergic interneurons in all glomeruli. Moreover, the relative level of interneuron activity in different glomeruli is largely odor invariant. Although interneurons are recruited nonspecifically, glomeruli differ dramatically in their sensitivity to interneuron activity, and this is explained by their varying sensitivity to GABA. Interestingly, a stimulus is typically encoded in parallel by channels having high and low sensitivity to inhibition. Because lateral inhibition confers both costs and benefits, the brain might rely preferentially on "high" and "low" channels in different behavioral contexts.

摘要

外周的气味受体精确地映射到大脑中的嗅觉小球(“编码通道”)上。然而,一个嗅觉小球的气味调谐与其空间位置并没有很强的相关性。这就提出了一个问题,即嗅觉小球之间的侧向抑制是特异性的还是非特异性的。在这里,我们表明,在果蝇大脑中,即使单个嗅觉小球的局部激活也会募集所有嗅觉小球中的GABA能中间神经元。此外,不同嗅觉小球中中间神经元活动的相对水平在很大程度上不受气味影响。尽管中间神经元的募集是非特异性的,但嗅觉小球对中间神经元活动的敏感性却有很大差异,这可以通过它们对GABA的不同敏感性来解释。有趣的是,一种刺激通常由对抑制具有高敏感性和低敏感性的通道并行编码。由于侧向抑制既有成本也有好处,大脑可能在不同的行为背景下优先依赖“高”和“低”通道。

相似文献

3
Normalized Neural Representations of Complex Odors.复杂气味的标准化神经表征。
PLoS One. 2016 Nov 11;11(11):e0166456. doi: 10.1371/journal.pone.0166456. eCollection 2016.
5
A systems perspective on early olfactory coding.早期嗅觉编码的系统视角。
Science. 1999 Oct 22;286(5440):723-8. doi: 10.1126/science.286.5440.723.
6
Tuning and topography in an odor map on the rat olfactory bulb.大鼠嗅球上气味图谱的调谐与拓扑结构
J Neurosci. 2001 Feb 15;21(4):1351-60. doi: 10.1523/JNEUROSCI.21-04-01351.2001.

引用本文的文献

6
Nonlinear high-activity neuronal excitation enhances odor discrimination.非线性高活性神经元兴奋增强气味辨别能力。
Curr Biol. 2025 Apr 7;35(7):1521-1538.e5. doi: 10.1016/j.cub.2025.02.034. Epub 2025 Mar 18.

本文引用的文献

1
Equalizing excitation-inhibition ratios across visual cortical neurons.均衡视觉皮层神经元的兴奋-抑制比。
Nature. 2014 Jul 31;511(7511):596-600. doi: 10.1038/nature13321. Epub 2014 Jun 22.
2
Construction of odor representations by olfactory bulb microcircuits.嗅球微回路对气味表征的构建
Prog Brain Res. 2014;208:177-203. doi: 10.1016/B978-0-444-63350-7.00007-3.
3
Early olfactory processing in Drosophila: mechanisms and principles.果蝇早期嗅觉加工:机制与原理。
Annu Rev Neurosci. 2013 Jul 8;36:217-41. doi: 10.1146/annurev-neuro-062111-150533.
4
Neuronal computations in the olfactory system of zebrafish.斑马鱼嗅觉系统中的神经元计算。
Annu Rev Neurosci. 2013 Jul 8;36:383-402. doi: 10.1146/annurev-neuro-062111-150504. Epub 2013 May 29.
7
How inhibition shapes cortical activity.抑制如何塑造皮层活动。
Neuron. 2011 Oct 20;72(2):231-43. doi: 10.1016/j.neuron.2011.09.027.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验