Suppr超能文献

理想化三层腹主动脉流固耦合分析中材料建模的研究:动脉瘤起始与完全发展的动脉瘤

Investigation of material modeling in fluid-structure interaction analysis of an idealized three-layered abdominal aorta: aneurysm initiation and fully developed aneurysms.

作者信息

Simsek Fatma Gulden, Kwon Young W

机构信息

Institute of Biomedical Engineering, Bogazici University, Kandilli Camp, Istanbul, Turkey,

出版信息

J Biol Phys. 2015 Mar;41(2):173-201. doi: 10.1007/s10867-014-9372-x. Epub 2015 Jan 27.

Abstract

Different material models for an idealized three-layered abdominal aorta are compared using computational techniques to study aneurysm initiation and fully developed aneurysms. The computational model includes fluid-structure interaction (FSI) between the blood vessel and the blood. In order to model aneurysm initiation, the medial region was degenerated to mimic the medial loss occurring in the inception of an aneurysm. Various cases are considered in order to understand their effects on the initiation of an abdominal aortic aneurysm. The layers of the blood vessel were modeled using either linear elastic materials or Mooney-Rivlin (otherwise known as hyperelastic) type materials. The degenerated medial region was also modeled in either linear elastic or hyperelastic-type materials and assumed to be in the shape of an arc with a thin width or a circular ring with different widths. The blood viscosity effect was also considered in the initiation mechanism. In addition, dynamic analysis of the blood vessel was performed without interaction with the blood flow by applying time-dependent pressure inside the lumen in a three-layered abdominal aorta. The stresses, strains, and displacements were compared for a healthy aorta, an initiated aneurysm and a fully developed aneurysm. The study shows that the material modeling of the vessel has a sizable effect on aneurysm initiation and fully developed aneurysms. Different material modeling of degeneration regions also affects the stress-strain response of aneurysm initiation. Additionally, the structural analysis without considering FSI (called noFSI) overestimates the peak von Mises stress by 52% at the interfaces of the layers.

摘要

使用计算技术比较了理想化三层腹主动脉的不同材料模型,以研究动脉瘤的起始和完全发展的动脉瘤。计算模型包括血管与血液之间的流固相互作用(FSI)。为了模拟动脉瘤的起始,使中膜区域退化以模拟动脉瘤起始时发生的中膜损失。考虑了各种情况,以了解它们对腹主动脉瘤起始的影响。血管层使用线性弹性材料或穆尼-里夫林(又称超弹性)型材料进行建模。退化的中膜区域也用线性弹性或超弹性型材料建模,并假定为具有薄宽度的弧形或具有不同宽度的圆环形状。在起始机制中也考虑了血液粘度的影响。此外,通过在三层腹主动脉的管腔内施加随时间变化的压力,对血管进行了不与血流相互作用的动态分析。比较了健康主动脉、起始动脉瘤和完全发展的动脉瘤的应力、应变和位移。研究表明,血管的材料建模对动脉瘤的起始和完全发展的动脉瘤有相当大的影响。退化区域的不同材料建模也会影响动脉瘤起始的应力-应变响应。此外,不考虑FSI的结构分析(称为noFSI)在层间界面处将冯·米塞斯峰值应力高估了52%。

相似文献

7
Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid-structure interaction.
Comput Methods Biomech Biomed Engin. 2008 Jun;11(3):301-22. doi: 10.1080/10255840701827412.
8
Analysis of biomechanical factors affecting stent-graft migration in an abdominal aortic aneurysm model.
J Biomech. 2006;39(12):2264-73. doi: 10.1016/j.jbiomech.2005.07.010. Epub 2005 Sep 8.
10
Advancements in identifying biomechanical determinants for abdominal aortic aneurysm rupture.
Vascular. 2015 Feb;23(1):65-77. doi: 10.1177/1708538114532084. Epub 2014 Apr 22.

引用本文的文献

2
Fluid-structure interaction analysis for abdominal aortic aneurysms: the role of multi-layered tissue architecture and intraluminal thrombus.
Front Bioeng Biotechnol. 2025 Feb 11;13:1519608. doi: 10.3389/fbioe.2025.1519608. eCollection 2025.
3
Foundational Engineering of Artificial Blood Vessels' Biomechanics: The Impact of Wavy Geometric Designs.
Biomimetics (Basel). 2024 Sep 10;9(9):546. doi: 10.3390/biomimetics9090546.
4
The biomechanical effects of different membrane layer structures and material constitutive modeling on patient-specific cerebral aneurysms.
Front Bioeng Biotechnol. 2024 Jan 15;11:1323266. doi: 10.3389/fbioe.2023.1323266. eCollection 2023.
5
Hemodynamics of vascular shunts: trends, challenges, and prospects.
Biophys Rev. 2023 Oct 18;15(5):1287-1301. doi: 10.1007/s12551-023-01149-3. eCollection 2023 Oct.
6
Modeling Dynamics of the Cardiovascular System Using Fluid-Structure Interaction Methods.
Biology (Basel). 2023 Jul 21;12(7):1026. doi: 10.3390/biology12071026.
7
Effect of Intraluminal Thrombus Burden on the Risk of Abdominal Aortic Aneurysm Rupture.
J Cardiovasc Dev Dis. 2023 May 26;10(6):233. doi: 10.3390/jcdd10060233.
9
On the optimal choice of a hyperelastic model of ruptured and unruptured cerebral aneurysm.
Sci Rep. 2019 Nov 1;9(1):15865. doi: 10.1038/s41598-019-52229-y.

本文引用的文献

2
Parametric study of effects of collagen turnover on the natural history of abdominal aortic aneurysms.
Proc Math Phys Eng Sci. 2013 Feb 8;469(2150):20120556. doi: 10.1098/rspa.2012.0556.
3
The role of geometric and biomechanical factors in abdominal aortic aneurysm rupture risk assessment.
Ann Biomed Eng. 2013 Jul;41(7):1459-77. doi: 10.1007/s10439-013-0786-6. Epub 2013 Mar 19.
4
Fluid structure interaction simulation in three-layered aortic aneurysm model under pulsatile flow: comparison of wrapping and stenting.
J Biomech. 2013 Apr 26;46(7):1335-42. doi: 10.1016/j.jbiomech.2013.02.002. Epub 2013 Mar 8.
6
Measuring and modeling patient-specific distributions of material properties in abdominal aortic aneurysm wall.
Biomech Model Mechanobiol. 2013 Aug;12(4):717-33. doi: 10.1007/s10237-012-0436-1. Epub 2012 Sep 7.
7
Biomechanical assessment of the individual risk of rupture of cerebral aneurysms: a proof of concept.
Ann Biomed Eng. 2013 Jan;41(1):28-40. doi: 10.1007/s10439-012-0632-2. Epub 2012 Aug 3.
8
A fluid-structure interaction-based numerical investigation on the evolution of stress, strength and rupture potential of an abdominal aortic aneurysm.
Comput Methods Biomech Biomed Engin. 2013;16(9):1032-9. doi: 10.1080/10255842.2011.652097. Epub 2012 Jan 30.
9
Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms.
J Biomech. 2012 Mar 15;45(5):805-14. doi: 10.1016/j.jbiomech.2011.11.021. Epub 2011 Dec 19.
10
Influence of differing material properties in media and adventitia on arterial adaptation--application to aneurysm formation and rupture.
Comput Methods Biomech Biomed Engin. 2013;16(1):33-53. doi: 10.1080/10255842.2011.603309. Epub 2011 Dec 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验