Suppr超能文献

基于极限学习机和模糊聚类的新的预测多元方法。

A New Multivariate Approach for Prognostics Based on Extreme Learning Machine and Fuzzy Clustering.

出版信息

IEEE Trans Cybern. 2015 Dec;45(12):2626-39. doi: 10.1109/TCYB.2014.2378056. Epub 2015 Jan 26.

Abstract

Prognostics is a core process of prognostics and health management (PHM) discipline, that estimates the remaining useful life (RUL) of a degrading machinery to optimize its service delivery potential. However, machinery operates in a dynamic environment and the acquired condition monitoring data are usually noisy and subject to a high level of uncertainty/unpredictability, which complicates prognostics. The complexity further increases, when there is absence of prior knowledge about ground truth (or failure definition). For such issues, data-driven prognostics can be a valuable solution without deep understanding of system physics. This paper contributes a new data-driven prognostics approach namely, an "enhanced multivariate degradation modeling," which enables modeling degrading states of machinery without assuming a homogeneous pattern. In brief, a predictability scheme is introduced to reduce the dimensionality of the data. Following that, the proposed prognostics model is achieved by integrating two new algorithms namely, the summation wavelet-extreme learning machine and subtractive-maximum entropy fuzzy clustering to show evolution of machine degradation by simultaneous predictions and discrete state estimation. The prognostics model is equipped with a dynamic failure threshold assignment procedure to estimate RUL in a realistic manner. To validate the proposition, a case study is performed on turbofan engines data from PHM challenge 2008 (NASA), and results are compared with recent publications.

摘要

预测是预测与健康管理(PHM)学科的核心过程,它估计了退化机械的剩余使用寿命(RUL),以优化其服务交付潜力。然而,机械在动态环境中运行,所获得的状态监测数据通常是嘈杂的,并且具有高度的不确定性/不可预测性,这使得预测变得复杂。当缺乏关于真实情况(或故障定义)的先验知识时,问题会更加复杂。对于此类问题,数据驱动的预测方法可以是一种没有深入了解系统物理特性的有价值的解决方案。本文提出了一种新的数据驱动预测方法,即“增强型多元退化建模”,它可以在不假设均匀模式的情况下对机械的退化状态进行建模。简而言之,引入了一种可预测性方案来降低数据的维数。之后,通过集成两个新算法,即求和小波-极限学习机和减法-最大熵模糊聚类,来同时进行预测和离散状态估计,展示机器的退化演变,从而实现了所提出的预测模型。该预测模型配备了动态故障阈值分配程序,以便以现实的方式估计 RUL。为了验证该方法的有效性,在 PHM 挑战 2008(NASA)的涡轮风扇发动机数据上进行了案例研究,并将结果与最近的出版物进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验