Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
J Mol Biol. 2015 Mar 27;427(6 Pt B):1359-1374. doi: 10.1016/j.jmb.2015.01.013. Epub 2015 Jan 30.
Despite the abundance of membrane-associated enzymes, the mechanism by which membrane binding stabilizes these enzymes and stimulates their catalysis remains largely unknown. Serum paraoxonase-1 (PON1) is a lipophilic lactonase whose stability and enzymatic activity are dramatically stimulated when associated with high-density lipoprotein (HDL) particles. Our mutational and structural analyses, combined with empirical valence bond simulations, reveal a network of hydrogen bonds that connect HDL binding residues with Asn168--a key catalytic residue residing >15Å from the HDL contacting interface. This network ensures precise alignment of N168, which, in turn, ligates PON1's catalytic calcium and aligns the lactone substrate for catalysis. HDL binding restrains the overall motion of the active site and particularly of N168, thus reducing the catalytic activation energy barrier. We demonstrate herein that disturbance of this network, even at its most far-reaching periphery, undermines PON1's activity. Membrane binding thus immobilizes long-range interactions via second- and third-shell residues that reduce the active site's floppiness and pre-organize the catalytic residues. Although this network is critical for efficient catalysis, as demonstrated here, unraveling these long-rage interaction networks is challenging, let alone their implementation in artificial enzyme design.
尽管膜相关酶大量存在,但膜结合如何稳定这些酶并刺激其催化作用的机制在很大程度上仍不清楚。血清对氧磷酶 1(PON1)是一种亲脂性内酯酶,当其与高密度脂蛋白(HDL)颗粒结合时,其稳定性和酶活性会显著增强。我们的突变和结构分析,结合经验价键模拟,揭示了一个氢键网络,将 HDL 结合残基与位于距离 HDL 接触界面 >15Å 的关键催化残基 Asn168 连接起来。该网络确保了精确的 N168 排列,从而连接 PON1 的催化钙并对齐内酯底物进行催化。HDL 结合限制了活性位点的整体运动,特别是 N168 的运动,从而降低了催化激活能垒。本文证明,即使是在最遥远的外围,破坏这个网络也会削弱 PON1 的活性。因此,膜结合通过第二和第三壳层残基固定远程相互作用,减少活性位点的灵活性并预组织催化残基。尽管这个网络对高效催化至关重要,但如本文所示,解开这些远程相互作用网络具有挑战性,更不用说将其应用于人工酶设计了。