Wade Kristin R, Hotze Eileen M, Kuiper Michael J, Morton Craig J, Parker Michael W, Tweten Rodney K
Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104;
Victorian Life Sciences Computation Initiative, The University of Melbourne, Parkville 3010, Victoria, Australia;
Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):2204-9. doi: 10.1073/pnas.1423754112. Epub 2015 Feb 2.
β-Barrel pore-forming toxins (βPFTs) form an obligatory oligomeric prepore intermediate before the formation of the β-barrel pore. The molecular components that control the critical prepore-to-pore transition remain unknown for βPFTs. Using the archetype βPFT perfringolysin O, we show that E183 of each monomer within the prepore complex forms an intermolecular electrostatic interaction with K336 of the adjacent monomer on completion of the prepore complex. The signal generated throughout the prepore complex by this interaction irrevocably commits it to the formation of the membrane-inserted giant β-barrel pore. This interaction supplies the free energy to overcome the energy barrier (determined here to be ∼ 19 kcal/mol) to the prepore-to-pore transition by the coordinated disruption of a critical interface within each monomer. These studies provide the first insight to our knowledge into the molecular mechanism that controls the prepore-to-pore transition for a βPFT.
β-桶状成孔毒素(βPFTs)在β-桶状孔形成之前会形成一种必不可少的寡聚前孔中间体。对于βPFTs而言,控制关键的前孔到孔转变的分子成分仍然未知。使用典型的βPFT产气荚膜梭菌溶血素O,我们发现前孔复合物中每个单体的E183在完成前孔复合物时与相邻单体的K336形成分子间静电相互作用。这种相互作用在前孔复合物中产生的信号使其不可逆转地致力于形成插入膜的巨大β-桶状孔。这种相互作用通过协调破坏每个单体中的关键界面来提供自由能,以克服前孔到孔转变的能量障碍(在此确定为约19千卡/摩尔)。这些研究首次为我们提供了关于控制βPFT前孔到孔转变的分子机制的见解。