Suppr超能文献

SPAK介导的对低钾饮食的NCC调节。

SPAK-mediated NCC regulation in response to low-K+ diet.

作者信息

Wade James B, Liu Jie, Coleman Richard, Grimm P Richard, Delpire Eric, Welling Paul A

机构信息

Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland; and

Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland; and.

出版信息

Am J Physiol Renal Physiol. 2015 Apr 15;308(8):F923-31. doi: 10.1152/ajprenal.00388.2014. Epub 2015 Jan 28.

Abstract

The NaCl cotransporter (NCC) of the renal distal convoluted tubule is stimulated by low-K(+) diet by an unknown mechanism. Since recent work has shown that the STE20/SPS-1-related proline-alanine-rich protein kinase (SPAK) can function to stimulate NCC by phosphorylation of specific N-terminal sites, we investigated whether the NCC response to low-K(+) diet is mediated by SPAK. Using phospho-specific antibodies in Western blot and immunolocalization studies of wild-type and SPAK knockout (SPAK(-/-)) mice fed a low-K(+) or control diet for 4 days, we found that low-K(+) diet strongly increased total NCC expression and phosphorylation of NCC. This was associated with an increase in total SPAK expression in cortical homogenates and an increase in phosphorylation of SPAK at the S383 activation site. The increased pNCC in response to low-K(+) diet was blunted but not completely inhibited in SPAK(-/-) mice. These findings reveal that SPAK is an important mediator of the increased NCC activation by phosphorylation that occurs in the distal convoluted tubule in response to a low-K(+) diet, but other low-potassium-activated kinases are likely to be involved.

摘要

肾远曲小管的氯化钠共转运体(NCC)受低钾饮食刺激,但其机制尚不清楚。由于最近的研究表明,STE20/SPS-1相关富含脯氨酸-丙氨酸的蛋白激酶(SPAK)可通过磷酸化特定的N端位点来刺激NCC,因此我们研究了NCC对低钾饮食的反应是否由SPAK介导。在对喂食低钾或对照饮食4天的野生型和SPAK基因敲除(SPAK(-/-))小鼠进行的蛋白质免疫印迹和免疫定位研究中,我们使用磷酸化特异性抗体发现,低钾饮食强烈增加了NCC的总表达和磷酸化水平。这与皮质匀浆中SPAK总表达的增加以及SPAK在S383激活位点的磷酸化增加有关。在SPAK(-/-)小鼠中,低钾饮食引起的pNCC增加虽有所减弱,但并未完全受到抑制。这些发现表明,SPAK是低钾饮食时远曲小管中NCC磷酸化激活增加的重要介质,但可能还涉及其他低钾激活激酶。

相似文献

1
SPAK-mediated NCC regulation in response to low-K+ diet.
Am J Physiol Renal Physiol. 2015 Apr 15;308(8):F923-31. doi: 10.1152/ajprenal.00388.2014. Epub 2015 Jan 28.
2
SPAK and OSR1 play essential roles in potassium homeostasis through actions on the distal convoluted tubule.
J Physiol. 2016 Sep 1;594(17):4945-66. doi: 10.1113/JP272311. Epub 2016 May 29.
3
Roles of WNK4 and SPAK in K-mediated dephosphorylation of the NaCl cotransporter.
Am J Physiol Renal Physiol. 2021 May 1;320(5):F719-F733. doi: 10.1152/ajprenal.00459.2020. Epub 2021 Mar 15.
4
Modulation of NCC activity by low and high K(+) intake: insights into the signaling pathways involved.
Am J Physiol Renal Physiol. 2014 Jun 15;306(12):F1507-19. doi: 10.1152/ajprenal.00255.2013. Epub 2014 Apr 23.
6
Differential roles of WNK4 in regulation of NCC in vivo.
Am J Physiol Renal Physiol. 2018 May 1;314(5):F999-F1007. doi: 10.1152/ajprenal.00177.2017. Epub 2018 Jan 31.
7
SPAK isoforms and OSR1 regulate sodium-chloride co-transporters in a nephron-specific manner.
J Biol Chem. 2012 Nov 2;287(45):37673-90. doi: 10.1074/jbc.M112.402800. Epub 2012 Sep 12.
8
Deletion of KS-WNK1 promotes NCC activation by increasing WNK1/4 abundance.
Am J Physiol Renal Physiol. 2024 Sep 1;327(3):F373-F385. doi: 10.1152/ajprenal.00101.2024. Epub 2024 Jul 4.
9
WNK bodies cluster WNK4 and SPAK/OSR1 to promote NCC activation in hypokalemia.
Am J Physiol Renal Physiol. 2020 Jan 1;318(1):F216-F228. doi: 10.1152/ajprenal.00232.2019. Epub 2019 Nov 18.
10
Potassium depletion stimulates Na-Cl cotransporter phosphorylation and inactivation of the ubiquitin ligase Kelch-like 3.
Biochem Biophys Res Commun. 2016 Nov;480(4):745-751. doi: 10.1016/j.bbrc.2016.10.127. Epub 2016 Oct 29.

引用本文的文献

2
Potassium-Switch Signaling Pathway Dictates Acute Blood Pressure Response to Dietary Potassium.
Hypertension. 2024 May;81(5):1044-1054. doi: 10.1161/HYPERTENSIONAHA.123.22546. Epub 2024 Mar 11.
4
Kinase Scaffold Cab39 Is Necessary for Phospho-Activation of the Thiazide-Sensitive NCC.
Hypertension. 2024 Apr;81(4):801-810. doi: 10.1161/HYPERTENSIONAHA.123.22464. Epub 2024 Jan 23.
6
Directing two-way traffic in the kidney: A tale of two ions.
J Gen Physiol. 2022 Oct 3;154(10). doi: 10.1085/jgp.202213179. Epub 2022 Sep 1.
8
Sex difference in kidney electrolyte transport III: Impact of low K intake on thiazide-sensitive cation excretion in male and female mice.
Pflugers Arch. 2021 Nov;473(11):1749-1760. doi: 10.1007/s00424-021-02611-5. Epub 2021 Aug 29.
9
Urinary Extracellular Vesicles for Renal Tubular Transporters Expression in Patients With Gitelman Syndrome.
Front Med (Lausanne). 2021 Jun 9;8:679171. doi: 10.3389/fmed.2021.679171. eCollection 2021.
10
WNKs are potassium-sensitive kinases.
Am J Physiol Cell Physiol. 2021 May 1;320(5):C703-C721. doi: 10.1152/ajpcell.00456.2020. Epub 2021 Jan 13.

本文引用的文献

3
Chloride sensing by WNK1 involves inhibition of autophosphorylation.
Sci Signal. 2014 May 6;7(324):ra41. doi: 10.1126/scisignal.2005050.
4
Sympathetic stimulation of thiazide-sensitive sodium chloride cotransport in the generation of salt-sensitive hypertension.
Hypertension. 2014 Jul;64(1):178-84. doi: 10.1161/HYPERTENSIONAHA.114.03335. Epub 2014 May 5.
5
Modulation of NCC activity by low and high K(+) intake: insights into the signaling pathways involved.
Am J Physiol Renal Physiol. 2014 Jun 15;306(12):F1507-19. doi: 10.1152/ajprenal.00255.2013. Epub 2014 Apr 23.
6
WNK4 is the major WNK positively regulating NCC in the mouse kidney.
Biosci Rep. 2014 May 9;34(3):e00107. doi: 10.1042/BSR20140047.
7
Increasing plasma [K+] by intravenous potassium infusion reduces NCC phosphorylation and drives kaliuresis and natriuresis.
Am J Physiol Renal Physiol. 2014 May 1;306(9):F1059-68. doi: 10.1152/ajprenal.00015.2014. Epub 2014 Mar 5.
8
Rapid dephosphorylation of the renal sodium chloride cotransporter in response to oral potassium intake in mice.
Kidney Int. 2013 May;83(5):811-24. doi: 10.1038/ki.2013.14. Epub 2013 Feb 27.
9
SPAK differentially mediates vasopressin effects on sodium cotransporters.
J Am Soc Nephrol. 2013 Feb;24(3):407-18. doi: 10.1681/ASN.2012040404. Epub 2013 Feb 7.
10
Effects of ACE inhibition and ANG II stimulation on renal Na-Cl cotransporter distribution, phosphorylation, and membrane complex properties.
Am J Physiol Cell Physiol. 2013 Jan 15;304(2):C147-63. doi: 10.1152/ajpcell.00287.2012. Epub 2012 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验