Navarro X, Porée F, Beuchée A, Carrault G
INSERM, U1099, Rennes, F-35000, France; Université de Rennes 1, Laboratoire Traitement du Signal et de l'Image, Rennes, F-35000, France; Sorbonne Universités, UPMC Univ Paris 06, UMRS-1158, Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, F-75005, France.
INSERM, U1099, Rennes, F-35000, France; Université de Rennes 1, Laboratoire Traitement du Signal et de l'Image, Rennes, F-35000, France.
Med Eng Phys. 2015 Mar;37(3):315-20. doi: 10.1016/j.medengphy.2015.01.006. Epub 2015 Feb 3.
Electroencephalography (EEG) from preterm infant monitoring systems is usually contaminated by several sources of noise that have to be removed in order to correctly interpret signals and perform automated analysis reliably. Band-pass and adaptive filters (AF) continue to be systematically applied, but their efficacy may be decreased facing preterm EEG patterns such as the tracé alternant and slow delta-waves. In this paper, we propose the combination of EEG decomposition with AF to improve the overall denoising process. Using artificially contaminated signals from real EEGs, we compared the quality of filtered signals applying different decomposition techniques: the discrete wavelet transform, the empirical mode decomposition (EMD) and a recent improved version, the complete ensemble EMD with adaptive noise. Simulations demonstrate that introducing EMD-based techniques prior to AF can reduce up to 30% the root mean squared errors in denoised EEGs.
早产儿监测系统的脑电图(EEG)通常会受到多种噪声源的污染,为了正确解读信号并可靠地进行自动分析,必须去除这些噪声。带通滤波器和自适应滤波器(AF)仍在被系统地应用,但面对早产儿脑电图模式,如交替图形和慢δ波时,它们的效果可能会降低。在本文中,我们提出将脑电图分解与自适应滤波器相结合,以改进整体去噪过程。利用来自真实脑电图的人工污染信号,我们比较了应用不同分解技术(离散小波变换、经验模态分解(EMD)以及最近的改进版本——具有自适应噪声的完全集合经验模态分解)后的滤波信号质量。模拟结果表明,在自适应滤波器之前引入基于经验模态分解的技术,可以将去噪后的脑电图中的均方根误差降低多达30%。