Gao Han, Wang Yingjun, Fei Xiaowen, Wright David A, Spalding Martin H
Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA.
Plant J. 2015 Apr;82(1):1-11. doi: 10.1111/tpj.12788.
The CO2 concentrating mechanism (CCM) is a key component of the carbon assimilation strategy of aquatic microalgae. Induced by limiting CO2 and tightly regulated, the CCM enables these microalgae to respond rapidly to varying environmental CO2 supplies and to perform photosynthetic CO2 assimilation in a cost-effective way. A functional CCM in eukaryotic algae requires Rubisco sequestration, rapid interconversion between CO2 and HCO3(-) catalyzed by carbonic anhydrases (CAs), and active inorganic carbon (Ci) uptake. In the model microalga Chlamydomonas reinhardtii, a membrane protein HLA3 is proposed to be involved in active Ci uptake across the plasma membrane. In this study, we use an artificially designed transcription activator-like effector (dTALE) to activate the expression of HLA3. The successful activation of HLA3 expression demonstrates dTALE as a promising tool for gene-specific activation and investigation of gene function in Chlamydomonas. Activation of HLA3 expression in high CO2 acclimated cells, where HLA3 is not expressed, resulted in increased Ci accumulation and Ci-dependent photosynthetic O2 evolution specifically in very low CO2 concentrations, which confirms that HLA3 is indeed involved in Ci uptake, and suggests it is mainly associated with HCO3(-) transport in very low CO2 concentrations, conditions in which active CO2 uptake is highly limited.
二氧化碳浓缩机制(CCM)是水生微藻碳同化策略的关键组成部分。在二氧化碳限制条件下被诱导并受到严格调控,CCM使这些微藻能够快速响应环境中二氧化碳供应的变化,并以经济高效的方式进行光合二氧化碳同化。真核藻类中的功能性CCM需要核酮糖-1,5-二磷酸羧化酶(Rubisco)的隔离、碳酸酐酶(CAs)催化的二氧化碳和碳酸氢根离子(HCO3(-))之间的快速相互转化,以及活性无机碳(Ci)的摄取。在模式微藻莱茵衣藻中,一种膜蛋白HLA3被认为参与了跨质膜的活性Ci摄取。在本研究中,我们使用人工设计的转录激活样效应物(dTALE)来激活HLA3的表达。HLA3表达的成功激活证明dTALE是一种用于莱茵衣藻基因特异性激活和基因功能研究的有前景的工具。在高二氧化碳适应细胞(其中HLA3不表达)中激活HLA3表达,导致Ci积累增加以及特别是在极低二氧化碳浓度下Ci依赖性光合氧气释放增加,这证实HLA3确实参与Ci摄取,并表明它主要在极低二氧化碳浓度下与HCO3(-)转运相关,在这种条件下活性二氧化碳摄取受到高度限制。