Suppr超能文献

治疗效果的非参数界限与敏感性分析

Nonparametric Bounds and Sensitivity Analysis of Treatment Effects.

作者信息

Richardson Amy, Hudgens Michael G, Gilbert Peter B, Fine Jason P

机构信息

Quantitative Analyst, Google Inc., Mountain View, California 94043, USA.

Associate Professor, Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.

出版信息

Stat Sci. 2014 Nov;29(4):596-618. doi: 10.1214/14-STS499.

Abstract

This paper considers conducting inference about the effect of a treatment (or exposure) on an outcome of interest. In the ideal setting where treatment is assigned randomly, under certain assumptions the treatment effect is identifiable from the observable data and inference is straightforward. However, in other settings such as observational studies or randomized trials with noncompliance, the treatment effect is no longer identifiable without relying on untestable assumptions. Nonetheless, the observable data often do provide some information about the effect of treatment, that is, the parameter of interest is partially identifiable. Two approaches are often employed in this setting: (i) bounds are derived for the treatment effect under minimal assumptions, or (ii) additional untestable assumptions are invoked that render the treatment effect identifiable and then sensitivity analysis is conducted to assess how inference about the treatment effect changes as the untestable assumptions are varied. Approaches (i) and (ii) are considered in various settings, including assessing principal strata effects, direct and indirect effects and effects of time-varying exposures. Methods for drawing formal inference about partially identified parameters are also discussed.

摘要

本文考虑对一种治疗(或暴露)对感兴趣的结局的影响进行推断。在理想的随机分配治疗的情况下,在某些假设下,治疗效果可从可观测数据中识别出来,推断也很直接。然而,在其他情况下,如观察性研究或存在不依从性的随机试验中,不依赖不可检验的假设,治疗效果就不再可识别。尽管如此,可观测数据通常确实提供了一些关于治疗效果的信息,即感兴趣的参数是部分可识别的。在这种情况下通常采用两种方法:(i)在最小假设下推导治疗效果的界值,或(ii)引入额外的不可检验假设以使治疗效果可识别,然后进行敏感性分析,以评估随着不可检验假设的变化,关于治疗效果的推断如何改变。在各种情况下都考虑了方法(i)和(ii),包括评估主要分层效应、直接和间接效应以及随时间变化的暴露的效应。还讨论了对部分识别参数进行形式化推断的方法。

相似文献

1
Nonparametric Bounds and Sensitivity Analysis of Treatment Effects.
Stat Sci. 2014 Nov;29(4):596-618. doi: 10.1214/14-STS499.
3
Sharpening bounds on principal effects with covariates.
Biometrics. 2013 Dec;69(4):812-9. doi: 10.1111/biom.12103. Epub 2013 Nov 18.
5
Sensitivity Analysis and Bounding of Causal Effects With Alternative Identifying Assumptions.
J Educ Behav Stat. 2011 Aug;36(1):415-440. doi: 10.3102/1076998610383985.
6
Causal inference methods to assess safety upper bounds in randomized trials with noncompliance.
Clin Trials. 2015 Jun;12(3):265-75. doi: 10.1177/1740774515572352. Epub 2015 Mar 1.
7
Sensitivity analysis for principal ignorability violation in estimating complier and noncomplier average causal effects.
Stat Med. 2024 Aug 30;43(19):3664-3688. doi: 10.1002/sim.10153. Epub 2024 Jun 18.
9
Using Bounds to Compare the Strength of Exchangeability Assumptions for Internal and External Validity.
Am J Epidemiol. 2019 Jul 1;188(7):1355-1360. doi: 10.1093/aje/kwz060.
10
Nonparametric Bounds for the Risk Function.
Am J Epidemiol. 2019 Apr 1;188(4):632-636. doi: 10.1093/aje/kwz013.

引用本文的文献

1
Sensitivity analysis for causality in observational studies for regulatory science.
J Clin Transl Sci. 2023 Dec 5;7(1):e267. doi: 10.1017/cts.2023.688. eCollection 2023.
2
BOUNDS ON THE CONDITIONAL AND AVERAGE TREATMENT EFFECT WITH UNOBSERVED CONFOUNDING FACTORS.
Ann Stat. 2022 Oct;50(5):2587-2615. doi: 10.1214/22-aos2195. Epub 2022 Oct 27.
3
Nonparametric inference of complier quantile treatment effects in randomized trials with imperfect compliance.
Biostat Epidemiol. 2022;6(2):249-265. doi: 10.1080/24709360.2021.2024972. Epub 2022 Feb 27.
4
Clarifying the causes of consistent and inconsistent findings in genetics.
Genet Epidemiol. 2022 Oct;46(7):372-389. doi: 10.1002/gepi.22459. Epub 2022 Jun 1.
5
Post-randomization Biomarker Effect Modification Analysis in an HIV Vaccine Clinical Trial.
J Causal Inference. 2020;8(1):54-69. doi: 10.1515/jci-2019-0022. Epub 2020 Jul 25.
6
In Pursuit of Evidence in Air Pollution Epidemiology: The Role of Causally Driven Data Science.
Epidemiology. 2020 Jan;31(1):1-6. doi: 10.1097/EDE.0000000000001090.
7
Epidemiology, genetic epidemiology and Mendelian randomisation: more need than ever to attend to detail.
Hum Genet. 2020 Jan;139(1):121-136. doi: 10.1007/s00439-019-02027-3. Epub 2019 May 27.
8
Comment.
J Am Stat Assoc. 2015 Dec;110(512):1345-1347. doi: 10.1080/01621459.2015.1033058. Epub 2016 Jan 15.

本文引用的文献

1
Sensitivity analysis for contagion effects in social networks.
Sociol Methods Res. 2011 May;40(2):240-255. doi: 10.1177/0049124111404821.
2
Controlled direct and mediated effects: definition, identification and bounds.
Scand Stat Theory Appl. 2011 Sep;38(3):551-563. doi: 10.1111/j.1467-9469.2010.00722.x.
3
Sharpening bounds on principal effects with covariates.
Biometrics. 2013 Dec;69(4):812-9. doi: 10.1111/biom.12103. Epub 2013 Nov 18.
4
Specifying the correlation structure in inverse-probability- weighting estimation for repeated measures.
Epidemiology. 2012 Jul;23(4):644-6. doi: 10.1097/EDE.0b013e31825727b5.
6
Principal stratification and attribution prohibition: good ideas taken too far.
Int J Biostat. 2011;7(1):Article 35. doi: 10.2202/1557-4679.1367. Epub 2011 Sep 14.
7
Sensitivity analysis for interactions under unmeasured confounding.
Stat Med. 2012 Sep 28;31(22):2552-64. doi: 10.1002/sim.4354. Epub 2011 Oct 4.
8
Bayesian inference for partially identified models.
Int J Biostat. 2010;6(2):Article 17. doi: 10.2202/1557-4679.1206.
10
Principal stratification--a goal or a tool?
Int J Biostat. 2011 Mar 30;7(1):20. doi: 10.2202/1557-4679.1322.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验