Wang Wenqiao, Ying Yangyang, Wu Quanyuan, Zhang Haiping, Ma Dedong, Xiao Wei
Department of Respiratory Medicine, Qilu Hospital, Shandong University, No. 107, Wenhua Xi Road, Jinan, Shandong, 250012, PR China; Department of Respiratory Diseases, China-Japan Friendship Hospital, Peking University, Beijing, PR China.
Department of Respiratory Medicine, Qilu Hospital, Shandong University, No. 107, Wenhua Xi Road, Jinan, Shandong, 250012, PR China.
Respir Med. 2015 Mar;109(3):372-8. doi: 10.1016/j.rmed.2015.01.006. Epub 2015 Jan 27.
Acute exacerbations of COPD (AECOPD) are important events during disease procedure. AECOPD have negative effect on patients' quality of life, symptoms and lung function, and result in high socioeconomic costs. Though previous studies have demonstrated the significant association between outdoor air pollution and AECOPD hospitalizations, little is known about the spatial relationship utilized a spatial analyzing technique- Geographical Information System (GIS).
Using GIS to investigate the spatial association between ambient air pollution and AECOPD hospitalizations in Jinan City, 2009.
414 AECOPD hospitalization cases in Jinan, 2009 were enrolled in our analysis. Monthly concentrations of five monitored air pollutants (NO2, SO2, PM10, O3, CO) during January 2009-December 2009 were provided by Environmental Protection Agency of Shandong Province. Each individual was geocoded in ArcGIS10.0 software. The spatial distribution of five pollutants and the temporal-spatial specific air pollutants exposure level for each individual was estimated by ordinary Kriging model. Spatial autocorrelation (Global Moran's I) was employed to explore the spatial association between ambient air pollutants and AECOPD hospitalizations. A generalized linear model (GLM) using a Poisson distribution with log-link function was used to construct a core model.
At residence, concentrations of SO2, PM10, NO2, CO, O3 and AECOPD hospitalization cases showed statistical significant spatially clustered. The Z-score of SO2, PM10, CO, O3, NO2 at residence is 15.88, 13.93, 12.60, 4.02, 2.44 respectively, while at workplace, concentrations of PM10, SO2, O3, CO and AECOPD hospitalization cases showed statistical significant spatially clustered. The Z-score of PM10, SO2, O3, CO at workplace is 11.39, 8.07, 6.10, and 5.08 respectively. After adjusting for potential confounders in the model, only the PM10 concentrations at workplace showed statistical significance, with a 10 μg/m(3) increase of PM10 at workplace associated with a 7% (95%CI: [3.3%, 10%]) increase of hospitalizations due to AECOPD.
Ambient air pollution is correlated with AECOPD hospitalizations spatially. A 10 μg/m(3) increase of PM10 at workplace was associated with a 7% (95%CI: [3.3%, 10%]) increase of hospitalizations due to AECOPD in Jinan, 2009. As a spatial data processing tool, GIS has novel and great potential on air pollutants exposure assessment and spatial analysis in AECOPD research.
慢性阻塞性肺疾病急性加重(AECOPD)是疾病进程中的重要事件。AECOPD对患者的生活质量、症状及肺功能均有负面影响,并导致高昂的社会经济成本。尽管既往研究已证实室外空气污染与AECOPD住院之间存在显著关联,但利用空间分析技术——地理信息系统(GIS)对二者空间关系的了解却很少。
运用GIS研究2009年济南市环境空气污染与AECOPD住院之间的空间关联。
纳入2009年济南市414例AECOPD住院病例进行分析。山东省环境保护厅提供了2009年1月至12月5种监测空气污染物(二氧化氮、二氧化硫、可吸入颗粒物、臭氧、一氧化碳)的月浓度数据。在ArcGIS10.0软件中对每个个体进行地理编码。采用普通克里金模型估计5种污染物的空间分布及每个个体的时空特定空气污染物暴露水平。运用空间自相关分析(全局莫兰指数)探讨环境空气污染物与AECOPD住院之间的空间关联。使用带对数连接函数的泊松分布广义线性模型(GLM)构建核心模型。
在居住地,二氧化硫、可吸入颗粒物、二氧化氮、一氧化碳、臭氧浓度及AECOPD住院病例显示出统计学显著的空间聚集。居住地二氧化硫、可吸入颗粒物、一氧化碳、臭氧、二氧化氮的Z值分别为15.88、13.93、12.60、4.02、2.44;而在工作场所,可吸入颗粒物、二氧化硫、臭氧、一氧化碳浓度及AECOPD住院病例显示出统计学显著的空间聚集。工作场所可吸入颗粒物、二氧化硫、臭氧、一氧化碳的Z值分别为11.39、8.07、6.10、5.08。在模型中对潜在混杂因素进行校正后,仅工作场所的可吸入颗粒物浓度具有统计学意义,工作场所可吸入颗粒物浓度每增加10μg/m³,与AECOPD导致的住院率增加7%(95%CI:[3.3%,10%])相关。
环境空气污染与AECOPD住院在空间上相关。2009年济南市工作场所可吸入颗粒物浓度每增加10μg/m³,与AECOPD导致的住院率增加7%(95%CI:[3.3%,10%])相关。作为一种空间数据处理工具,GIS在AECOPD研究的空气污染物暴露评估及空间分析方面具有新颖且巨大的潜力。