Suppr超能文献

运动神经元特性对慢性代偿性肌肉负荷过重的适应性变化。

Adaptations of motoneuron properties to chronic compensatory muscle overload.

作者信息

Krutki P, Hałuszka A, Mrówczyński W, Gardiner P F, Celichowski J

机构信息

Department of Neurobiology, University School of Physical Education, Poznań, Poland; and

Department of Neurobiology, University School of Physical Education, Poznań, Poland; and.

出版信息

J Neurophysiol. 2015 Apr 1;113(7):2769-77. doi: 10.1152/jn.00968.2014. Epub 2015 Feb 18.

Abstract

The aim of the study was to determine whether chronic muscle overload has measurable effect on electrophysiological properties of motoneurons (MNs), and whether duration of this overload influences intensity of adaptations. The compensatory overload was induced in the rat medial gastrocnemius (MG) by bilateral tenotomy of its synergists (lateral gastrocnemius, soleus, and plantaris); as a result, only the MG was able to evoke the foot plantar flexion. To assure regular activation of the MG muscle, rats were placed in wheel-equipped cages and subjected to a low-level treadmill exercise. The intracellular recordings from MG motoneurons were made after 5 or 12 wk of the overload, and in a control group of intact rats. Some of the passive and threshold membrane properties as well as rhythmic firing properties were considerably modified in fast-type MNs, while remaining unaltered in slow-type MNs. The significant changes included a shortening of the spike duration and the spike rise time, an increase of the afterhyperpolarization amplitude, an increase of the input resistance, a decrease of the rheobase, and a decrease of the minimum current necessary to evoke steady-state firing. The data suggest higher excitability of fast-type MNs innervating the overloaded muscle, and a shift towards electrophysiological properties of slow-type MNs. All of the adaptations could be observed after 5 wk of the compensatory overload with no further changes occurring after 12 wk. This indicates that the response to an increased level of chronic activation of MNs is relatively quick and stable.

摘要

本研究的目的是确定慢性肌肉过载是否对运动神经元(MNs)的电生理特性有可测量的影响,以及这种过载的持续时间是否会影响适应性的强度。通过双侧切断其协同肌(外侧腓肠肌、比目鱼肌和跖肌)在大鼠内侧腓肠肌(MG)中诱导代偿性过载;结果,只有MG能够引起足跖屈。为确保MG肌肉的定期激活,将大鼠置于配备轮子的笼子中,并进行低强度跑步机运动。在过载5周或12周后,以及在完整大鼠的对照组中,对MG运动神经元进行细胞内记录。快速型MNs的一些被动和阈值膜特性以及节律性放电特性有相当大的改变,而慢速型MNs则保持不变。显著变化包括动作电位持续时间和动作电位上升时间缩短、超极化后电位幅度增加、输入电阻增加、基强度降低以及诱发稳态放电所需的最小电流降低。数据表明,支配过载肌肉的快速型MNs兴奋性更高,并向慢速型MNs的电生理特性转变。在代偿性过载5周后即可观察到所有适应性变化,12周后无进一步变化。这表明,MNs慢性激活水平升高后的反应相对迅速且稳定。

相似文献

1
Adaptations of motoneuron properties to chronic compensatory muscle overload.
J Neurophysiol. 2015 Apr 1;113(7):2769-77. doi: 10.1152/jn.00968.2014. Epub 2015 Feb 18.
2
Adaptations of motoneuron properties after weight-lifting training in rats.
J Appl Physiol (1985). 2017 Sep 1;123(3):664-673. doi: 10.1152/japplphysiol.00121.2017. Epub 2017 Jun 8.
3
Enhanced neuromuscular transmission efficacy in overloaded rat plantaris muscle.
Muscle Nerve. 2004 Jan;29(1):97-103. doi: 10.1002/mus.10535.
4
Polarity-dependent adaptations of motoneuron electrophysiological properties after 5-wk transcutaneous spinal direct current stimulation in rats.
J Appl Physiol (1985). 2020 Oct 1;129(4):646-655. doi: 10.1152/japplphysiol.00301.2020. Epub 2020 Aug 13.
5
Hindlimb unweighting for 2 weeks alters physiological properties of rat hindlimb motoneurones.
J Physiol. 2005 Nov 1;568(Pt 3):841-50. doi: 10.1113/jphysiol.2005.091835. Epub 2005 Aug 25.
6
Differential maturation of motoneurons innervating ankle flexor and extensor muscles in the neonatal rat.
Eur J Neurosci. 2000 Dec;12(12):4562-6. doi: 10.1046/j.0953-816x.2000.01321.x.
10
Ia EPSPs in rat spinal motoneurons are potentiated after a 5-week whole body vibration.
J Appl Physiol (1985). 2022 Jan 1;132(1):178-186. doi: 10.1152/japplphysiol.00519.2021. Epub 2021 Dec 2.

引用本文的文献

1
Brief early-life motor training induces behavioral changes and alters neuromuscular development in mice.
PLoS Biol. 2025 Apr 21;23(4):e3003153. doi: 10.1371/journal.pbio.3003153. eCollection 2025 Apr.
2
The Role of Brain Plasticity in Neuromuscular Disorders: Current Knowledge and Future Prospects.
Brain Sci. 2024 Sep 26;14(10):971. doi: 10.3390/brainsci14100971.
3
Signaling pathways regulated by natural active ingredients in the fight against exercise fatigue-a review.
Front Pharmacol. 2023 Dec 14;14:1269878. doi: 10.3389/fphar.2023.1269878. eCollection 2023.
4
Exercise-induced adaptation of neurons in the vertebrate locomotor system.
J Sport Health Sci. 2024 Mar;13(2):160-171. doi: 10.1016/j.jshs.2023.10.006. Epub 2023 Oct 31.
6
Mathematical relationships between spinal motoneuron properties.
Elife. 2022 Jul 18;11:e76489. doi: 10.7554/eLife.76489.
7
The electrophysiological properties of hindlimb motoneurons do not differ between male and female rats.
Eur J Neurosci. 2022 Aug;56(3):4176-4186. doi: 10.1111/ejn.15745. Epub 2022 Jun 30.
8
C-bouton components on rat extensor digitorum longus motoneurons are resistant to chronic functional overload.
J Anat. 2022 Nov;241(5):1157-1168. doi: 10.1111/joa.13439. Epub 2021 May 3.
10
Meta-analysis of biological variables' impact on spinal motoneuron electrophysiology data.
J Neurophysiol. 2020 Apr 1;123(4):1380-1391. doi: 10.1152/jn.00378.2019. Epub 2020 Feb 19.

本文引用的文献

1
Force regulation and electrical properties of motor units in overloaded muscle.
Muscle Nerve. 2016 Jan;53(1):96-106. doi: 10.1002/mus.24690. Epub 2015 Nov 26.
2
Skeletal muscle cells express ICAM-1 after muscle overload and ICAM-1 contributes to the ensuing hypertrophic response.
PLoS One. 2013;8(3):e58486. doi: 10.1371/journal.pone.0058486. Epub 2013 Mar 11.
3
The influence of a 5-wk whole body vibration on electrophysiological properties of rat hindlimb spinal motoneurons.
J Neurophysiol. 2013 Jun;109(11):2705-11. doi: 10.1152/jn.00108.2013. Epub 2013 Mar 13.
4
Electrophysiological and motor function scale association in a pre-symptomatic infant with spinal muscular atrophy type I.
Neuromuscul Disord. 2013 Feb;23(2):112-5. doi: 10.1016/j.nmd.2012.09.006. Epub 2012 Nov 10.
5
Early response of heat shock proteins to functional overload of the soleus and plantaris in rats and mice.
Exp Physiol. 2010 Dec;95(12):1145-55. doi: 10.1113/expphysiol.2010.054692. Epub 2010 Sep 17.
6
Doublet of action potentials evoked by intracellular injection of rectangular depolarization current into rat motoneurones.
Exp Brain Res. 2010 Aug;205(1):95-102. doi: 10.1007/s00221-010-2339-7. Epub 2010 Jul 3.
7
Low-intensity treadmill exercise-related changes in the rat stellate ganglion neurons.
J Neurosci Res. 2009 May 1;87(6):1334-42. doi: 10.1002/jnr.21961.
8
Caloric restriction does not offset age-associated changes in the biophysical properties of motoneurons.
J Neurophysiol. 2009 Feb;101(2):548-57. doi: 10.1152/jn.90617.2008. Epub 2008 Sep 10.
10
Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training.
J Appl Physiol (1985). 2007 Jan;102(1):368-73. doi: 10.1152/japplphysiol.00789.2006. Epub 2006 Oct 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验