Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.
Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.
PLoS Comput Biol. 2015 Feb 19;11(2):e1004046. doi: 10.1371/journal.pcbi.1004046. eCollection 2015 Feb.
Selective dimerization of the basic-region leucine-zipper (bZIP) transcription factors presents a vivid example of how a high degree of interaction specificity can be achieved within a family of structurally similar proteins. The coiled-coil motif that mediates homo- or hetero-dimerization of the bZIP proteins has been intensively studied, and a variety of methods have been proposed to predict these interactions from sequence data. In this work, we used a large quantitative set of 4,549 bZIP coiled-coil interactions to develop a predictive model that exploits knowledge of structurally conserved residue-residue interactions in the coiled-coil motif. Our model, which expresses interaction energies as a sum of interpretable residue-pair and triplet terms, achieves a correlation with experimental binding free energies of R = 0.68 and significantly out-performs other scoring functions. To use our model in protein design applications, we devised a strategy in which synthetic peptides are built by assembling 7-residue native-protein heptad modules into new combinations. An integer linear program was used to find the optimal combination of heptads to bind selectively to a target human bZIP coiled coil, but not to target paralogs. Using this approach, we designed peptides to interact with the bZIP domains from human JUN, XBP1, ATF4 and ATF5. Testing more than 132 candidate protein complexes using a fluorescence resonance energy transfer assay confirmed the formation of tight and selective heterodimers between the designed peptides and their targets. This approach can be used to make inhibitors of native proteins, or to develop novel peptides for applications in synthetic biology or nanotechnology.
碱性亮氨酸拉链(bZIP)转录因子的选择性二聚化为我们生动地展示了在结构相似的蛋白质家族中如何实现高度的相互作用特异性。介导 bZIP 蛋白同型或异型二聚化的卷曲螺旋基序已得到深入研究,并且已经提出了多种方法来根据序列数据预测这些相互作用。在这项工作中,我们使用了一个由 4549 个 bZIP 卷曲螺旋相互作用组成的大型定量数据集,开发了一种预测模型,该模型利用了卷曲螺旋基序中结构保守的残基-残基相互作用的知识。我们的模型将相互作用能表示为可解释的残基对和三联体项的和,与实验结合自由能的相关性为 R = 0.68,并且明显优于其他评分函数。为了在蛋白质设计应用中使用我们的模型,我们设计了一种策略,通过将 7 个残基的天然蛋白七肽模块组装成新的组合来构建合成肽。整数线性规划用于找到最佳的七肽组合,以选择性地与目标人 bZIP 卷曲螺旋结合,但不与目标同源物结合。使用这种方法,我们设计了与人类 JUN、XBP1、ATF4 和 ATF5 的 bZIP 结构域相互作用的肽。使用荧光共振能量转移测定法对超过 132 个候选蛋白复合物进行测试,证实了设计的肽与它们的靶标之间形成了紧密和选择性的异二聚体。这种方法可用于制备天然蛋白的抑制剂,或开发用于合成生物学或纳米技术的新型肽。