Suppr超能文献

低等后生动物的电发生及其对神经元整合的影响。

Electrogenesis in the lower Metazoa and implications for neuronal integration.

作者信息

Meech Robert W

机构信息

School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK

出版信息

J Exp Biol. 2015 Feb 15;218(Pt 4):537-50. doi: 10.1242/jeb.111955.

Abstract

Electrogenic communication appears to have evolved independently in a variety of animal and plant lineages. Considered here are metazoan cells as disparate as the loose three-dimensional parenchyma of glass sponges, the two-dimensional epithelial sheets of hydrozoan jellyfish and the egg cell membranes of the ctenophore Beroe ovata, all of which are capable of generating electrical impulses. Neuronal electrogenesis may have evolved independently in ctenophores and cnidarians but the dearth of electrophysiological data relating to ctenophore nerves means that our attention is focused on the Cnidaria, whose nervous systems have been the subject of extensive study. The aim here is to show how their active and passive neuronal properties interact to give integrated behaviour. Neuronal electrogenesis, goes beyond simply relaying 'states of excitement' and utilizes the equivalent of a set of basic electrical 'apps' to integrate incoming sensory information with internally generated pacemaker activity. A small number of membrane-based processes make up these analogue applications. Passive components include the decremental spread of current determined by cellular anatomy; active components include ion channels specified by their selectivity and voltage dependence. A recurring theme is the role of inactivating potassium channels in regulating performance. Although different aspects of cnidarian behaviour are controlled by separate neuronal systems, integrated responses and coordinated movements depend on interactions between them. Integrative interactions discussed here include those between feeding and swimming, between tentacle contraction and swimming and between slow and fast swimming in the hydrozoan jellyfish Aglantha digitale.

摘要

电致通讯似乎在多种动植物谱系中独立进化。这里所考虑的后生动物细胞种类繁多,从玻璃海绵松散的三维实质组织、水螅水母的二维上皮层到栉水母Beroe ovata的卵细胞细胞膜,所有这些细胞都能够产生电冲动。栉水母和刺胞动物的神经元电发生可能是独立进化的,但与栉水母神经相关的电生理数据匮乏,这意味着我们的注意力集中在刺胞动物上,其神经系统一直是广泛研究的对象。这里的目的是展示它们的主动和被动神经元特性如何相互作用以产生整合行为。神经元电发生不仅仅是简单地传递“兴奋状态”,而是利用一组相当于基本电“应用程序”的东西,将传入的感觉信息与内部产生的起搏器活动整合起来。这些类似应用由少数基于膜的过程组成。被动成分包括由细胞解剖结构决定的电流递减传播;主动成分包括由其选择性和电压依赖性确定的离子通道。一个反复出现的主题是失活钾通道在调节性能方面的作用。尽管刺胞动物行为的不同方面由不同的神经元系统控制,但整合反应和协调运动取决于它们之间的相互作用。这里讨论的整合相互作用包括水螅水母Aglantha digitale的摄食与游泳之间、触手收缩与游泳之间以及慢速和快速游泳之间的相互作用。

相似文献

1
Electrogenesis in the lower Metazoa and implications for neuronal integration.
J Exp Biol. 2015 Feb 15;218(Pt 4):537-50. doi: 10.1242/jeb.111955.
2
Membrane currents that govern smooth muscle contraction in a ctenophore.
Nature. 1988 Feb 11;331(6156):533-5. doi: 10.1038/331533a0.
3
The ctenophore lineage is older than sponges? That cannot be right! Or can it?
J Exp Biol. 2015 Feb 15;218(Pt 4):592-7. doi: 10.1242/jeb.111872.
4
An even "newer" animal phylogeny.
Bioessays. 2008 Nov;30(11-12):1043-7. doi: 10.1002/bies.20842.
5
Origins. On the origin of the nervous system.
Science. 2009 Jul 3;325(5936):24-6. doi: 10.1126/science.325_24.
6
The search for ancestral nervous systems: an integrative and comparative approach.
J Exp Biol. 2015 Feb 15;218(Pt 4):612-7. doi: 10.1242/jeb.110387.
8
Ionic currents in giant motor axons of the jellyfish, Aglantha digitale.
J Neurophysiol. 1993 Mar;69(3):884-93. doi: 10.1152/jn.1993.69.3.884.
9
Atlas of the neuromuscular system in the Trachymedusa Aglantha digitale: Insights from the advanced hydrozoan.
J Comp Neurol. 2020 May;528(7):1231-1254. doi: 10.1002/cne.24821. Epub 2019 Dec 2.

引用本文的文献

1
Dynamics of neural activity in early nervous system evolution.
Curr Opin Behav Sci. 2024 Oct;59. doi: 10.1016/j.cobeha.2024.101437. Epub 2024 Aug 6.
2
Environmental complexity and regularity shape the evolution of cognition.
Proc Biol Sci. 2024 Oct;291(2033):20241524. doi: 10.1098/rspb.2024.1524. Epub 2024 Oct 23.
3
Electrophysiology of Ctenophore Smooth Muscle.
Methods Mol Biol. 2024;2757:315-359. doi: 10.1007/978-1-0716-3642-8_15.
4
Brief History of Ctenophora.
Methods Mol Biol. 2024;2757:1-26. doi: 10.1007/978-1-0716-3642-8_1.
6
Two swimming modes in Trachymedusae; bell kinematics and the role of giant axons.
J Exp Biol. 2021 May 15;224(10). doi: 10.1242/jeb.239830. Epub 2021 May 25.
7
The animal sensorimotor organization: a challenge for the environmental complexity thesis.
Biol Philos. 2017;32(3):421-441. doi: 10.1007/s10539-017-9565-3. Epub 2017 Feb 16.
8
Back to the Basics: Cnidarians Start to Fire.
Trends Neurosci. 2017 Feb;40(2):92-105. doi: 10.1016/j.tins.2016.11.005. Epub 2016 Dec 30.
10
From damage response to action potentials: early evolution of neural and contractile modules in stem eukaryotes.
Philos Trans R Soc Lond B Biol Sci. 2016 Jan 5;371(1685):20150043. doi: 10.1098/rstb.2015.0043.

本文引用的文献

3
Convergent evolution of neural systems in ctenophores.
J Exp Biol. 2015 Feb 15;218(Pt 4):598-611. doi: 10.1242/jeb.110692.
4
The ctenophore genome and the evolutionary origins of neural systems.
Nature. 2014 Jun 5;510(7503):109-14. doi: 10.1038/nature13400. Epub 2014 May 21.
5
The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution.
Science. 2013 Dec 13;342(6164):1242592. doi: 10.1126/science.1242592.
6
The evolutionary origins of modularity.
Proc Biol Sci. 2013 Jan 30;280(1755):20122863. doi: 10.1098/rspb.2012.2863. Print 2013 Mar 22.
7
New insights on ctenophore neural anatomy: immunofluorescence study in Pleurobrachia pileus (Müller, 1776).
J Exp Zool B Mol Dev Evol. 2011 May 15;316B(3):171-87. doi: 10.1002/jez.b.21386. Epub 2010 Dec 31.
8
Do jellyfish have central nervous systems?
J Exp Biol. 2011 Apr 15;214(Pt 8):1215-23. doi: 10.1242/jeb.043687.
9
Multiple photoreceptor systems control the swim pacemaker activity in box jellyfish.
J Exp Biol. 2009 Dec;212(Pt 24):3951-60. doi: 10.1242/jeb.031559.
10
Nerves in the endodermal canals of hydromedusae and their role in swimming inhibition.
Invert Neurosci. 2008 Dec;8(4):199-209. doi: 10.1007/s10158-008-0082-6. Epub 2008 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验