Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27606, USA; Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC 27695, USA.
Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27606, USA.
Trends Microbiol. 2015 Apr;23(4):225-32. doi: 10.1016/j.tim.2015.01.008. Epub 2015 Feb 17.
Manipulation of genomic sequences facilitates the identification and characterization of key genetic determinants in the investigation of biological processes. Genome editing via clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) constitutes a next-generation method for programmable and high-throughput functional genomics. CRISPR-Cas systems are readily reprogrammed to induce sequence-specific DNA breaks at target loci, resulting in fixed mutations via host-dependent DNA repair mechanisms. Although bacterial genome editing is a relatively unexplored and underrepresented application of CRISPR-Cas systems, recent studies provide valuable insights for the widespread future implementation of this technology. This review summarizes recent progress in bacterial genome editing and identifies fundamental genetic and phenotypic outcomes of CRISPR targeting in bacteria, in the context of tool development, genome homeostasis, and DNA repair.
基因组序列的操纵有助于在研究生物过程中鉴定和描述关键的遗传决定因素。通过成簇规律间隔短回文重复序列 (CRISPR)-CRISPR 相关 (Cas) 进行基因组编辑是一种用于可编程和高通量功能基因组学的下一代方法。CRISPR-Cas 系统可以轻松重新编程,在靶标位点诱导序列特异性 DNA 断裂,通过宿主依赖的 DNA 修复机制导致固定突变。尽管细菌基因组编辑是 CRISPR-Cas 系统相对未开发和代表性不足的应用,但最近的研究为这项技术的广泛未来应用提供了有价值的见解。本综述总结了细菌基因组编辑的最新进展,并确定了 CRISPR 靶向在细菌中的工具开发、基因组动态平衡和 DNA 修复方面的基本遗传和表型结果。