Suppr超能文献

人类海马体的超高分辨率体内7.0T结构成像揭示了终叶通路。

Ultra-high resolution in-vivo 7.0T structural imaging of the human hippocampus reveals the endfolial pathway.

作者信息

Parekh Mansi B, Rutt Brian K, Purcell Ryan, Chen Yuanxin, Zeineh Michael M

机构信息

Department of Radiology, Stanford University, Stanford, CA, USA.

Department of Radiology, Stanford University, Stanford, CA, USA.

出版信息

Neuroimage. 2015 May 15;112:1-6. doi: 10.1016/j.neuroimage.2015.02.029. Epub 2015 Feb 19.

Abstract

The hippocampus is a very important structure in memory formation and retrieval, as well as in various neurological disorders such as Alzheimer's disease, epilepsy and depression. It is composed of many intricate subregions making it difficult to study the anatomical changes that take place during disease. The hippocampal hilus may have a unique neuroanatomy in humans compared to that in monkeys and rodents, with field CA3h greatly enlarged in humans compared to that in rodents, and a white-matter pathway, called the endfolial pathway, possibly only present in humans. In this study we have used newly developed 7.0T whole brain imaging sequence, balanced steady-state free precession (bSSFP) that can achieve 0.4mm isotropic images to study, in vivo, the anatomy of the hippocampal hilus. A detailed hippocampal subregional segmentation was performed according to anatomic atlases segmenting the following regions: CA4, CA3, CA2, CA1, SRLM (stratum radiatum lacunosum moleculare), alveus, fornix, and subiculum along with its molecular layer. We also segmented a hypointense structure centrally within the hilus that resembled the endfolial pathway. To validate that this hypointense signal represented the endfolial pathway, we acquired 0.1mm isotropic 8-phase cycle bSSFP on an excised specimen, and then sectioned and stained the specimen for myelin using an anti-myelin basic protein antibody (SMI 94). A structure tensor analysis was calculated on the myelin-stained section to show directionality of the underlying fibers. The endfolial pathway was consistently visualized within the hippocampal body in vivo in all subjects. It is a central pathway in the hippocampus, with unknown relevance in neurodegenerative disorders, but now that it can be visualized noninvasively, we can study its function and alterations in neurodegeneration.

摘要

海马体在记忆形成与提取以及各种神经疾病(如阿尔茨海默病、癫痫和抑郁症)中是一个非常重要的结构。它由许多错综复杂的亚区域组成,这使得研究疾病过程中发生的解剖学变化变得困难。与猴子和啮齿动物相比,人类海马体门可能具有独特的神经解剖结构,与啮齿动物相比,人类的CA3h区大大扩大,并且一种称为终叶通路的白质通路可能仅存在于人类中。在本研究中,我们使用新开发的7.0T全脑成像序列——平衡稳态自由进动(bSSFP),其能够获得各向同性为0.4mm的图像,以在活体状态下研究海马体门的解剖结构。根据解剖图谱对海马体进行详细的亚区域分割,划分以下区域:CA4、CA3、CA2、CA1、辐射层分子层(SRLM)、海马槽、穹窿以及海马下托及其分子层。我们还分割了海马体门中央的一个低信号结构,其类似于终叶通路。为了验证这种低信号代表终叶通路,我们在一个切除的标本上采集了各向同性为0.1mm的8期循环bSSFP,然后使用抗髓鞘碱性蛋白抗体(SMI 94)对标本进行切片和髓鞘染色。对髓鞘染色的切片进行结构张量分析以显示下层纤维的方向性。在所有受试者的活体海马体内均持续观察到终叶通路。它是海马体中的一条中央通路,在神经退行性疾病中的相关性未知,但既然它可以通过非侵入性方式观察到,我们就能够研究其在神经退行性变中的功能和改变。

相似文献

1
Ultra-high resolution in-vivo 7.0T structural imaging of the human hippocampus reveals the endfolial pathway.
Neuroimage. 2015 May 15;112:1-6. doi: 10.1016/j.neuroimage.2015.02.029. Epub 2015 Feb 19.
2
A novel in vivo atlas of human hippocampal subfields using high-resolution 3 T magnetic resonance imaging.
Neuroimage. 2013 Jul 1;74:254-65. doi: 10.1016/j.neuroimage.2013.02.003. Epub 2013 Feb 13.
3
Development of a histologically validated segmentation protocol for the hippocampal body.
Neuroimage. 2017 Aug 15;157:219-232. doi: 10.1016/j.neuroimage.2017.06.008. Epub 2017 Jun 3.
4
Detection of volume loss in hippocampal layers in Alzheimer's disease using 7 T MRI: a feasibility study.
Neuroimage Clin. 2014 Jul 31;5:341-8. doi: 10.1016/j.nicl.2014.07.011. eCollection 2014.
5
Altered T2* relaxation time of the hippocampus in major depressive disorder: implications of ultra-high field magnetic resonance imaging.
J Psychiatr Res. 2010 Oct;44(14):881-6. doi: 10.1016/j.jpsychires.2010.02.014. Epub 2010 Mar 24.
7
Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
Neuroimage. 2014 Nov 1;101:494-512. doi: 10.1016/j.neuroimage.2014.04.054. Epub 2014 Apr 29.
9
Vascular risk moderates associations between hippocampal subfield volumes and memory.
J Cogn Neurosci. 2013 Nov;25(11):1851-62. doi: 10.1162/jocn_a_00435. Epub 2013 Jun 14.
10
Stratum radiatum of CA2 is an additional target of the perforant path in humans and monkeys.
Neuroreport. 2010 Mar 10;21(4):245-9. doi: 10.1097/WNR.0b013e328333d690.

引用本文的文献

1
Epileptic brain network mechanisms and neuroimaging techniques for the brain network.
Neural Regen Res. 2024 Dec 1;19(12):2637-2648. doi: 10.4103/1673-5374.391307. Epub 2023 Dec 21.
2
Immunohistochemical field parcellation of the human hippocampus along its antero-posterior axis.
Brain Struct Funct. 2024 Mar;229(2):359-385. doi: 10.1007/s00429-023-02725-9. Epub 2024 Jan 5.
3
Imaging crossing fibers in mouse, pig, monkey, and human brain using small-angle X-ray scattering.
Acta Biomater. 2023 Jul 1;164:317-331. doi: 10.1016/j.actbio.2023.04.029. Epub 2023 Apr 23.
4
Pentad: A reproducible cytoarchitectonic protocol and its application to parcellation of the human hippocampus.
Front Neuroanat. 2023 Feb 9;17:1114757. doi: 10.3389/fnana.2023.1114757. eCollection 2023.
5
High-resolution Structural Magnetic Resonance Imaging and Quantitative Susceptibility Mapping.
Magn Reson Imaging Clin N Am. 2021 Feb;29(1):13-39. doi: 10.1016/j.mric.2020.09.002.
6
Simultaneous FDG-PET/MRI detects hippocampal subfield metabolic differences in AD/MCI.
Sci Rep. 2020 Jul 21;10(1):12064. doi: 10.1038/s41598-020-69065-0.
7
Longitudinal Changes in Hippocampal Subfield Volume Associated with Collegiate Football.
J Neurotrauma. 2019 Oct 1;36(19):2762-2773. doi: 10.1089/neu.2018.6357. Epub 2019 Jun 17.
8
Hippocampal Shape Maturation in Childhood and Adolescence.
Cereb Cortex. 2019 Aug 14;29(9):3651-3665. doi: 10.1093/cercor/bhy244.
9
A protocol for manual segmentation of medial temporal lobe subregions in 7 Tesla MRI.
Neuroimage Clin. 2017 May 26;15:466-482. doi: 10.1016/j.nicl.2017.05.022. eCollection 2017.
10
Hippocampal subfields at ultra high field MRI: An overview of segmentation and measurement methods.
Hippocampus. 2017 May;27(5):481-494. doi: 10.1002/hipo.22717. Epub 2017 Feb 23.

本文引用的文献

4
A novel in vivo atlas of human hippocampal subfields using high-resolution 3 T magnetic resonance imaging.
Neuroimage. 2013 Jul 1;74:254-65. doi: 10.1016/j.neuroimage.2013.02.003. Epub 2013 Feb 13.
5
Examining brain microstructure using structure tensor analysis of histological sections.
Neuroimage. 2012 Oct 15;63(1):1-10. doi: 10.1016/j.neuroimage.2012.06.042. Epub 2012 Jun 30.
6
Ultra-high resolution diffusion tensor imaging of the microscopic pathways of the medial temporal lobe.
Neuroimage. 2012 Sep;62(3):2065-82. doi: 10.1016/j.neuroimage.2012.05.065. Epub 2012 Jun 5.
7
Subfields of the hippocampal formation at 7 T MRI: in vivo volumetric assessment.
Neuroimage. 2012 Jul 16;61(4):1043-9. doi: 10.1016/j.neuroimage.2012.03.023. Epub 2012 Mar 14.
8
Ultra-high field 7T MRI: a new tool for studying Alzheimer's disease.
J Alzheimers Dis. 2011;26 Suppl 3:91-5. doi: 10.3233/JAD-2011-0023.
9
Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy.
Biomech Model Mechanobiol. 2012 Mar;11(3-4):461-73. doi: 10.1007/s10237-011-0325-z. Epub 2011 Jul 10.
10
Hippocampal CA1 apical neuropil atrophy in mild Alzheimer disease visualized with 7-T MRI.
Neurology. 2010 Oct 12;75(15):1381-7. doi: 10.1212/WNL.0b013e3181f736a1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验