Suppr超能文献

磁性植入式神经电极:组织反应与功能寿命

Magnetically Inserted Neural Electrodes: Tissue Response and Functional Lifetime.

作者信息

Dryg Ian D, Ward Matthew P, Qing Kurt Y, Mei Henry, Schaffer Jeremy E, Irazoqui Pedro P

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2015 Jul;23(4):562-71. doi: 10.1109/TNSRE.2015.2399856. Epub 2015 Feb 18.

Abstract

Neural recording and stimulation have great clinical potential. Long-term neural recording remains a challenge, however, as implantable electrodes eventually fail due to the adverse effects of the host tissue response to the indwelling implant. Astrocytes and microglia attempt to engulf the electrode, increasing the electrical impedance between the electrode and neurons, and possibly pushing neurons away from the recording site. Faster insertion speed, finer tip geometry, smaller size, and lower material stiffness all seem to decrease damage caused by insertion and reduce the intensity of the tissue response. However, electrodes that are too small result in buckling, making insertion impossible. In this paper, we assess the viability of high-speed (27.8 m/s) deployment of 25 μm, ferromagnetic microelectrodes into rat brain. To characterize functionality of magnetically inserted electrodes, 4 Long-Evans rats were implanted for 31 days with impedance measurements and neural recordings taken daily. Performance was compared to 150 μm diameter PlasticsOne electrodes since 25 μm electrodes buckled during "slow speed" insertion. Platinum-iron magnetically inserted electrodes resolved single unit activity throughout the duration of the study in one rat, and saw no significant change (p=0.970) in impedance (4.54% increase) from day 0 (Z0 ≈ 144 kΩ,Z31 ≈ 150 kΩ). These findings provide a proof-of-concept for magnetic insertion as a viable insertion method that enables nonbuckling implantation of small (25 μm) microelectrodes, with potential for neural recording applications.

摘要

神经记录和刺激具有巨大的临床潜力。然而,长期神经记录仍然是一项挑战,因为可植入电极最终会因宿主组织对植入物的不良反应而失效。星形胶质细胞和小胶质细胞试图吞噬电极,增加电极与神经元之间的电阻抗,并可能将神经元推离记录部位。更快的插入速度、更精细的尖端几何形状、更小的尺寸和更低的材料刚度似乎都能减少插入造成的损伤,并降低组织反应的强度。然而,过小的电极会导致弯曲,无法插入。在本文中,我们评估了以27.8米/秒的高速将25微米的铁磁微电极植入大鼠大脑的可行性。为了表征磁插入电极的功能,对4只Long-Evans大鼠进行了为期31天的植入,每天进行阻抗测量和神经记录。由于25微米的电极在“低速”插入过程中发生弯曲,因此将其性能与直径为150微米的PlasticsOne电极进行了比较。在一只大鼠的整个研究期间,铂铁磁插入电极都能分辨单个单元的活动,并且从第0天到第31天,阻抗没有显著变化(p = 0.970)(增加了4.54%)(Z0≈144千欧,Z31≈150千欧)。这些发现为磁插入作为一种可行的插入方法提供了概念验证,该方法能够实现小尺寸(25微米)微电极的无弯曲植入,具有神经记录应用的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验