Suppr超能文献

通过基于特征选择的机器学习寻找用于自闭症检测的最小行为集。

Searching for a minimal set of behaviors for autism detection through feature selection-based machine learning.

作者信息

Kosmicki J A, Sochat V, Duda M, Wall D P

机构信息

1] Department of Medicine, Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA [2] Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.

Graduate Program in Biomedical Informatics, Stanford University, Stanford, CA, USA.

出版信息

Transl Psychiatry. 2015 Feb 24;5(2):e514. doi: 10.1038/tp.2015.7.

Abstract

Although the prevalence of autism spectrum disorder (ASD) has risen sharply in the last few years reaching 1 in 68, the average age of diagnosis in the United States remains close to 4--well past the developmental window when early intervention has the largest gains. This emphasizes the importance of developing accurate methods to detect risk faster than the current standards of care. In the present study, we used machine learning to evaluate one of the best and most widely used instruments for clinical assessment of ASD, the Autism Diagnostic Observation Schedule (ADOS) to test whether only a subset of behaviors can differentiate between children on and off the autism spectrum. ADOS relies on behavioral observation in a clinical setting and consists of four modules, with module 2 reserved for individuals with some vocabulary and module 3 for higher levels of cognitive functioning. We ran eight machine learning algorithms using stepwise backward feature selection on score sheets from modules 2 and 3 from 4540 individuals. We found that 9 of the 28 behaviors captured by items from module 2, and 12 of the 28 behaviors captured by module 3 are sufficient to detect ASD risk with 98.27% and 97.66% accuracy, respectively. A greater than 55% reduction in the number of behaviorals with negligible loss of accuracy across both modules suggests a role for computational and statistical methods to streamline ASD risk detection and screening. These results may help enable development of mobile and parent-directed methods for preliminary risk evaluation and/or clinical triage that reach a larger percentage of the population and help to lower the average age of detection and diagnosis.

摘要

尽管自闭症谱系障碍(ASD)的患病率在过去几年中急剧上升,达到了68分之一,但美国的平均诊断年龄仍接近4岁——远远超过了早期干预效果最佳的发育窗口期。这凸显了开发比当前护理标准更快检测风险的准确方法的重要性。在本研究中,我们使用机器学习来评估用于ASD临床评估的最佳且使用最广泛的工具之一——自闭症诊断观察量表(ADOS),以测试是否只有一部分行为能够区分自闭症谱系上的儿童和非自闭症谱系的儿童。ADOS依赖于临床环境中的行为观察,由四个模块组成,其中模块2适用于有一定词汇量的个体,模块3适用于认知功能较高水平的个体。我们对4540名个体的模块2和模块3的评分表使用逐步向后特征选择运行了八种机器学习算法。我们发现,模块2的项目所涵盖的28种行为中有9种,以及模块3所涵盖的28种行为中有12种,分别足以以98.27%和97.66%的准确率检测ASD风险。两个模块中行为数量减少超过55%,而准确率损失可忽略不计,这表明计算和统计方法在简化ASD风险检测和筛查方面发挥了作用。这些结果可能有助于开发移动和家长指导的方法,用于初步风险评估和/或临床分诊,覆盖更大比例的人群,并有助于降低检测和诊断的平均年龄。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验