Suppr超能文献

从数据到最优决策:一种数据驱动的、概率机器学习方法,用于支持脓毒症患者的决策。

From data to optimal decision making: a data-driven, probabilistic machine learning approach to decision support for patients with sepsis.

机构信息

Department of Computer Science and Genome Center, University of California, Davis, Davis, CA, United States.

出版信息

JMIR Med Inform. 2015 Feb 24;3(1):e11. doi: 10.2196/medinform.3445.

Abstract

BACKGROUND

A tantalizing question in medical informatics is how to construct knowledge from heterogeneous datasets, and as an extension, inform clinical decisions. The emergence of large-scale data integration in electronic health records (EHR) presents tremendous opportunities. However, our ability to efficiently extract informed decision support is limited due to the complexity of the clinical states and decision process, missing data and lack of analytical tools to advice based on statistical relationships.

OBJECTIVE

Development and assessment of a data-driven method that infers the probability distribution of the current state of patients with sepsis, likely trajectories, optimal actions related to antibiotic administration, prediction of mortality and length-of-stay.

METHODS

We present a data-driven, probabilistic framework for clinical decision support in sepsis-related cases. We first define states, actions, observations and rewards based on clinical practice, expert knowledge and data representations in an EHR dataset of 1492 patients. We then use Partially Observable Markov Decision Process (POMDP) model to derive the optimal policy based on individual patient trajectories and we evaluate the performance of the model-derived policies in a separate test set. Policy decisions were focused on the type of antibiotic combinations to administer. Multi-class and discriminative classifiers were used to predict mortality and length of stay.

RESULTS

Data-derived antibiotic administration policies led to a favorable patient outcome in 49% of the cases, versus 37% when the alternative policies were followed (P=1.3e-13). Sensitivity analysis on the model parameters and missing data argue for a highly robust decision support tool that withstands parameter variation and data uncertainty. When the optimal policy was followed, 387 patients (25.9%) have 90% of their transitions to better states and 503 patients (33.7%) patients had 90% of their transitions to worse states (P=4.0e-06), while in the non-policy cases, these numbers are 192 (12.9%) and 764 (51.2%) patients (P=4.6e-117), respectively. Furthermore, the percentage of transitions within a trajectory that lead to a better or better/same state are significantly higher by following the policy than for non-policy cases (605 vs 344 patients, P=8.6e-25). Mortality was predicted with an AUC of 0.7 and 0.82 accuracy in the general case and similar performance was obtained for the inference of the length-of-stay (AUC of 0.69 to 0.73 with accuracies from 0.69 to 0.82).

CONCLUSIONS

A data-driven model was able to suggest favorable actions, predict mortality and length of stay with high accuracy. This work provides a solid basis for a scalable probabilistic clinical decision support framework for sepsis treatment that can be expanded to other clinically relevant states and actions, as well as a data-driven model that can be adopted in other clinical areas with sufficient training data.

摘要

背景

医学信息学中一个诱人的问题是如何从异构数据集构建知识,并将其扩展为临床决策。电子健康记录(EHR)中的大规模数据集成带来了巨大的机会。然而,由于临床状态和决策过程的复杂性、缺失数据以及缺乏基于统计关系提供建议的分析工具,我们有效地提取有意义的决策支持的能力受到限制。

目的

开发和评估一种数据驱动的方法,该方法可以推断出败血症患者当前状态的概率分布、可能的轨迹、与抗生素管理相关的最佳操作、死亡率和住院时间的预测。

方法

我们提出了一种数据驱动的、针对败血症相关病例的临床决策支持概率框架。我们首先根据临床实践、专家知识和 EHR 数据集(1492 名患者)中的数据表示定义状态、操作、观察结果和奖励。然后,我们使用部分可观察马尔可夫决策过程(POMDP)模型根据个体患者轨迹推导出最优策略,并在单独的测试集中评估模型策略的性能。策略决策集中在要管理的抗生素组合类型上。多类和判别分类器用于预测死亡率和住院时间。

结果

数据驱动的抗生素管理策略导致 49%的病例患者结果良好,而采用替代策略的病例为 37%(P=1.3e-13)。对模型参数和缺失数据的敏感性分析表明,该决策支持工具具有高度的稳健性,能够承受参数变化和数据不确定性的影响。当遵循最优策略时,387 名患者(25.9%)中有 90%的状态转移到更好的状态,503 名患者(33.7%)中有 90%的状态转移到更差的状态(P=4.0e-06),而在非策略病例中,这些数字分别为 192 名(12.9%)和 764 名(51.2%)患者(P=4.6e-117)。此外,与非策略病例相比,遵循策略后,轨迹内导致状态更好或更好/相同的转移百分比显著更高(605 名患者比 344 名患者,P=8.6e-25)。死亡率预测的 AUC 为 0.7,一般情况下的准确率为 0.82,而推断住院时间的性能相似(AUC 为 0.69 至 0.73,准确率为 0.69 至 0.82)。

结论

数据驱动模型能够提出有利的行动建议,以高精度预测死亡率和住院时间。这项工作为脓毒症治疗的可扩展概率临床决策支持框架提供了坚实的基础,该框架可以扩展到其他临床相关状态和操作,以及可以在具有足够训练数据的其他临床领域采用的数据驱动模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/218a/4376114/52d94d18a2f1/medinform_v3i1e11_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验