Suppr超能文献

无屏蔽情况下金属电子气的哈特里-福克态密度修正。

A correction for the Hartree-Fock density of states for jellium without screening.

作者信息

Blair Alexander I, Kroukis Aristeidis, Gidopoulos Nikitas I

机构信息

Department of Physics, Durham University, South Road, Durham DH1 3LE, United Kingdom.

出版信息

J Chem Phys. 2015 Feb 28;142(8):084116. doi: 10.1063/1.4909519.

Abstract

We revisit the Hartree-Fock (HF) calculation for the uniform electron gas, or jellium model, whose predictions--divergent derivative of the energy dispersion relation and vanishing density of states (DOS) at the Fermi level--are in qualitative disagreement with experimental evidence for simple metals. Currently, this qualitative failure is attributed to the lack of screening in the HF equations. Employing Slater's hyper-Hartree-Fock (HHF) equations, derived variationally, to study the ground state and the excited states of jellium, we find that the divergent derivative of the energy dispersion relation and the zero in the DOS are still present, but shifted from the Fermi wavevector and energy of jellium to the boundary between the set of variationally optimised and unoptimised HHF orbitals. The location of this boundary is not fixed, but it can be chosen to lie at arbitrarily high values of wavevector and energy, well clear from the Fermi level of jellium. We conclude that, rather than the lack of screening in the HF equations, the well-known qualitative failure of the ground-state HF approximation is an artifact of its nonlocal exchange operator. Other similar artifacts of the HF nonlocal exchange operator, not associated with the lack of electronic correlation, are known in the literature.

摘要

我们重新审视均匀电子气(即凝胶模型)的哈特里 - 福克(HF)计算,其预测结果——能量色散关系的发散导数以及费米能级处态密度(DOS)的消失——与简单金属的实验证据在定性上存在分歧。目前,这种定性失败归因于HF方程中缺乏屏蔽。采用通过变分法导出的斯莱特超哈特里 - 福克(HHF)方程来研究凝胶的基态和激发态,我们发现能量色散关系的发散导数和DOS中的零点仍然存在,但从凝胶的费米波矢和能量转移到了变分优化和未优化的HHF轨道集合之间的边界处。这个边界的位置不是固定的,但可以选择位于波矢和能量的任意高值处,远离凝胶的费米能级。我们得出结论,基态HF近似的著名定性失败并非源于HF方程中缺乏屏蔽,而是其非局部交换算符的人为产物。文献中还已知HF非局部交换算符的其他类似人为产物,它们与缺乏电子关联无关。

相似文献

1
A correction for the Hartree-Fock density of states for jellium without screening.
J Chem Phys. 2015 Feb 28;142(8):084116. doi: 10.1063/1.4909519.
3
Hartree-Fock ground state phase diagram of jellium.
Phys Rev Lett. 2013 Oct 18;111(16):166402. doi: 10.1103/PhysRevLett.111.166402. Epub 2013 Oct 14.
5
Hartree-Fock ground state of the three-dimensional electron gas.
Phys Rev Lett. 2008 Jun 13;100(23):236404. doi: 10.1103/PhysRevLett.100.236404.
6
A simple and efficient dispersion correction to the Hartree-Fock theory.
Bioorg Med Chem Lett. 2014 Feb 15;24(4):1037-42. doi: 10.1016/j.bmcl.2014.01.020. Epub 2014 Jan 15.
7
Finite jellium models. I. Restricted Hartree-Fock calculations.
J Chem Phys. 2005 Apr 15;122(15):154108. doi: 10.1063/1.1873552.
8
An improved Slater's transition state approximation.
J Chem Phys. 2021 Jul 21;155(3):034101. doi: 10.1063/5.0059934.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验