Suppr超能文献

电子转移、退相干和蛋白质动力学:来自原子模拟的见解。

Electron transfer, decoherence, and protein dynamics: insights from atomistic simulations.

机构信息

†Laboratoire de Chimie Théorique, CNRS UMR 7616, Université Pierre et Marie Curie, case courrier 137. 4, Place Jussieu, 75252 Cedex 05 Paris, France.

‡Laboratoire de Chimie-Physique, CNRS UMR 8000, Université Paris Sud, Bâtiment 349 - Campus d'Orsay. 15, avenue Jean Perrin, 91405 Cedex Orsay, France.

出版信息

Acc Chem Res. 2015 Apr 21;48(4):1090-7. doi: 10.1021/ar5002796. Epub 2015 Mar 2.

Abstract

Electron transfer in biological systems drives the processes of life. From cellular respiration to photosynthesis and enzymatic catalysis, electron transfers (ET) are chemical processes on which essential biological functions rely. Over the last 40 years, scientists have sought understanding of how these essential processes function in biology. One important breakthrough was the discovery that Marcus theory (MT) of electron transfer is applicable to biological systems. Chemists have experimentally collected both the reorganization energies (λ) and the driving forces (ΔG°), two parameters of Marcus theory, for a large variety of ET processes in proteins. At the same time, theoretical chemists have developed computational approaches that rely on molecular dynamics and quantum chemistry calculations to access numerical estimates of λ and ΔG°. Yet another crucial piece in determining the rate of an electron transfer is the electronic coupling between the initial and final electronic wave functions. This is an important prefactor in the nonadiabatic rate expression, since it reflects the probability that an electron tunnels from the electron donor to the acceptor through the intervening medium. The fact that a protein matrix supports electron tunneling much more efficiently than vacuum is now well documented, both experimentally and theoretically. Meanwhile, many chemists have provided examples of the rich physical chemistry that can be induced by protein dynamics. This Account describes our studies of the dynamical effects on electron tunneling. We present our analysis of two examples of natural biological systems through MD simulations and tunneling pathway analyses. Through these examples, we show that protein dynamics sustain efficient tunneling. Second, we introduce two time scales: τcoh and τFC. The former characterizes how fast the electronic coupling varies with nuclear vibrations (which cause dephasing). The latter reflects the time taken by the system to leave the crossing region. In the framework of open quantum systems, τFC is a short time approximation of the characteristic decoherence time of the electronic subsystem in interaction with its nuclear environment. The comparison of the respective values of τcoh and τFC allows us to probe the occurrence of non-Condon effects. We use ab initio MD simulations to analyze how decoherence appears in several biological cofactors. We conclude that we cannot account for its order of magnitude by considering only the atoms or bonds directly concerned with the transfer. Decoherence results from contributions from all atoms of the system appearing with a time delay that increases with the distance from the primarily concerned atoms or bonds. The delay and magnitude of the contributions depend on the chemical nature of the system. Finally, we present recent developments based on constrained DFT for efficient and accurate evaluations of the electronic coupling in ab initio MD simulations. These are promising methods to study the subtle fluctuations of the electronic coupling and the mechanisms of electronic decoherence in biological systems.

摘要

电子在生物体系中的转移驱动着生命过程。从细胞呼吸到光合作用和酶催化,电子转移(ET)是生物功能所依赖的关键化学反应。在过去的 40 年中,科学家们一直在努力理解这些基本过程在生物学中的功能。一个重要的突破是发现马库斯理论(MT)适用于生物体系。化学家们已经通过实验收集了蛋白质中各种 ET 过程的重组能(λ)和驱动力(ΔG°)这两个马库斯理论参数。与此同时,理论化学家们已经开发出计算方法,这些方法依赖于分子动力学和量子化学计算,以获取 λ 和 ΔG°的数值估计。决定电子转移速率的另一个关键因素是初始和最终电子波函数之间的电子耦合。这是非绝热速率表达式中的一个重要前因子,因为它反映了电子通过中间介质从电子给体隧穿到受体的概率。蛋白质基质支持电子隧穿的效率远远高于真空,这一点现在已经通过实验和理论得到了很好的证明。同时,许多化学家已经提供了蛋白质动力学可以诱导的丰富物理化学的例子。本综述描述了我们对电子隧穿动力学效应的研究。我们通过 MD 模拟和隧穿途径分析,对两个自然生物系统的实例进行了分析。通过这些例子,我们表明蛋白质动力学支持高效隧穿。其次,我们引入了两个时间尺度:τcoh 和 τFC。前者描述了电子耦合随核振动(引起退相位)的变化有多快。后者反映了系统离开交叉区域所需的时间。在开放量子系统的框架下,τFC 是电子子系统与核环境相互作用的特征退相干时间的短时间近似。τcoh 和 τFC 的比值可以用来探测非库仑效应的发生。我们使用从头算 MD 模拟来分析几个生物辅因子中退相干是如何出现的。我们得出的结论是,仅考虑直接参与转移的原子或键,我们无法解释其数量级。退相干是由于系统中所有原子的贡献造成的,其出现的时间延迟随着与主要相关原子或键的距离增加而增加。贡献的延迟和幅度取决于系统的化学性质。最后,我们介绍了基于约束密度泛函理论的新方法,该方法用于高效、准确地评估从头算 MD 模拟中的电子耦合。这些是研究生物体系中电子耦合的微妙波动和电子退相干机制的有前途的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验